Cargando…

Outlier Analysis

With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly participated in the latest advancements of the outlier analysis field. Computer scientists, specifically, approach thi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Aggarwal, Charu C. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-6396-2
003 DE-He213
005 20220117173450.0
007 cr nn 008mamaa
008 130109s2013 xxu| s |||| 0|eng d
020 |a 9781461463962  |9 978-1-4614-6396-2 
024 7 |a 10.1007/978-1-4614-6396-2  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Aggarwal, Charu C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Outlier Analysis  |h [electronic resource] /  |c by Charu C. Aggarwal. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XV, 446 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a An Introduction to Outlier Analysis -- Probabilistic and Statistical Models for Outlier Detection -- Linear Models for Outlier Detection -- Proximity-based Outlier Detection -- High-Dimensional Outlier Detection: The Subspace Method -- Supervised Outlier Detection -- Outlier Detection in Categorical, Text and Mixed Attribute Data -- Time Series and Multidimensional Streaming Outlier Detection -- Outlier Detection in Discrete Sequences -- Spatial Outlier Detection -- Outlier Detection in Graphs and Networks -- Applications of Outlier Analysis. 
520 |a With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly participated in the latest advancements of the outlier analysis field. Computer scientists, specifically, approach this field based on their practical experiences in managing large amounts of data, and with far fewer assumptions- the data can be of any type, structured or unstructured, and may be extremely large. Outlier Analysis is a comprehensive exposition, as understood by data mining experts, statisticians and computer scientists. The book has been organized carefully, and emphasis was placed on simplifying the content, so that students and practitioners can also benefit. Chapters will typically cover one of three areas: methods and techniques  commonly used in outlier analysis, such as linear methods, proximity-based methods, subspace methods, and supervised methods; data  domains, such as, text, categorical, mixed-attribute, time-series, streaming, discrete sequence, spatial and network data; and key applications of these methods as applied to diverse domains such as  credit card fraud detection, intrusion detection, medical diagnosis, earth science, web log analytics, and social network analysis are covered. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical statistics-Data processing. 
650 0 |a Data protection. 
650 0 |a Database management. 
650 0 |a Information storage and retrieval systems. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Statistics and Computing. 
650 2 4 |a Data and Information Security. 
650 2 4 |a Database Management. 
650 2 4 |a Information Storage and Retrieval. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461463979 
776 0 8 |i Printed edition:  |z 9781489987563 
776 0 8 |i Printed edition:  |z 9781461463955 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-6396-2  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)