Cargando…

Design of Experiments in Nonlinear Models Asymptotic Normality, Optimality Criteria and Small-Sample Properties /

Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties provides a comprehensive coverage of the various aspects of experimental design for nonlinear models. The book contains original contributions to the theory of optimal experiments that wi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Pronzato, Luc (Autor), Pázman, Andrej (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes in Statistics, 212
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-6363-4
003 DE-He213
005 20220113144618.0
007 cr nn 008mamaa
008 130410s2013 xxu| s |||| 0|eng d
020 |a 9781461463634  |9 978-1-4614-6363-4 
024 7 |a 10.1007/978-1-4614-6363-4  |2 doi 
050 4 |a QH323.5 
072 7 |a PBT  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 570.15195  |2 23 
100 1 |a Pronzato, Luc.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Design of Experiments in Nonlinear Models  |h [electronic resource] :  |b Asymptotic Normality, Optimality Criteria and Small-Sample Properties /  |c by Luc Pronzato, Andrej Pázman. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XV, 399 p. 56 illus., 37 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Statistics,  |x 2197-7186 ;  |v 212 
505 0 |a Introduction -- Asymptotic designs and uniform convergence. Asymptotic properties of the LS estimator -- Asymptotic properties of M, ML and maximum a posteriori estimators -- Local optimality criteria based on asymptotic normality -- Criteria based on the small-sample precision of the LS estimator -- Identifiability, estimability and extended optimality criteria -- Nonlocal optimum design -- Algorithms-a survey -- Subdifferentials and subgradients -- Computation of derivatives through sensitivity functions -- Proofs -- Symbols and notation -- List of labeled assumptions -- References. 
520 |a Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties provides a comprehensive coverage of the various aspects of experimental design for nonlinear models. The book contains original contributions to the theory of optimal experiments that will interest students and researchers in the field. Practitionners motivated by applications will find valuable tools to help them designing their experiments.  The first three chapters expose the connections between the asymptotic properties of estimators in parametric models and experimental design, with more emphasis than usual on some particular aspects like the estimation of a nonlinear function of the model parameters, models with heteroscedastic errors, etc. Classical optimality criteria based on those asymptotic properties are then presented thoroughly in a special chapter.  Three chapters are dedicated to specific issues raised by nonlinear models. The construction of design criteria derived from non-asymptotic considerations (small-sample situation) is detailed. The connection between design and identifiability/estimability issues is investigated. Several approaches are presented to face the problem caused by the dependence of an optimal design on the value of the parameters to be estimated.  A survey of algorithmic methods for the construction of optimal designs is provided. 
650 0 |a Biometry. 
650 0 |a Statistics . 
650 0 |a Social sciences-Statistical methods. 
650 1 4 |a Biostatistics. 
650 2 4 |a Statistics. 
650 2 4 |a Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy. 
700 1 |a Pázman, Andrej.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461463641 
776 0 8 |i Printed edition:  |z 9781461463627 
830 0 |a Lecture Notes in Statistics,  |x 2197-7186 ;  |v 212 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-6363-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)