Particle Filters for Random Set Models
"Particle Filters for Random Set Models" presents coverage of state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carl...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Ristic, Branko (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York : Imprint: Springer,
2013.
|
Edición: | 1st ed. 2013. |
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Image Fusion Theories, Techniques and Applications /
por: Mitchell, H.B
Publicado: (2010) -
A Rapid Introduction to Adaptive Filtering
por: Vega, Leonardo Rey, et al.
Publicado: (2013) -
Tracking and Sensor Data Fusion Methodological Framework and Selected Applications /
por: Koch, Wolfgang
Publicado: (2014) -
Support Vector Machines
por: Steinwart, Ingo, et al.
Publicado: (2008) -
Non-negative Matrix Factorization Techniques Advances in Theory and Applications /
Publicado: (2016)