Cargando…

System Identification Using Regular and Quantized Observations Applications of Large Deviations Principles /

This brief presents characterizations of identification errors under a probabilistic framework when output sensors are binary, quantized, or regular.  By considering both space complexity in terms of signal quantization and time complexity with respect to data window sizes, this study provides a new...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: He, Qi (Autor), Wang, Le Yi (Autor), Yin, George G. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-6292-7
003 DE-He213
005 20220117115556.0
007 cr nn 008mamaa
008 130220s2013 xxu| s |||| 0|eng d
020 |a 9781461462927  |9 978-1-4614-6292-7 
024 7 |a 10.1007/978-1-4614-6292-7  |2 doi 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 003  |2 23 
100 1 |a He, Qi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a System Identification Using Regular and Quantized Observations  |h [electronic resource] :  |b Applications of Large Deviations Principles /  |c by Qi He, Le Yi Wang, George G. Yin. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 95 p. 17 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8201 
505 0 |a Introduction and Overview.- System Identification: Formulation.- Large Deviations: An Introduction.- LDP under I.I.D. Noises.- LDP under Mixing Noises.- Applications to Battery Diagnosis.- Applications to Medical Signal Processing.-Applications to Electric Machines -- Remarks and Conclusion -- References -- Index. 
520 |a This brief presents characterizations of identification errors under a probabilistic framework when output sensors are binary, quantized, or regular.  By considering both space complexity in terms of signal quantization and time complexity with respect to data window sizes, this study provides a new perspective to understand the fundamental relationship between probabilistic errors and resources, which may represent data sizes in computer usage, computational complexity in algorithms, sample sizes in statistical analysis and channel bandwidths in communications. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Control engineering. 
650 0 |a Probabilities. 
650 1 4 |a Systems Theory, Control . 
650 2 4 |a Control and Systems Theory. 
650 2 4 |a Probability Theory. 
700 1 |a Wang, Le Yi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Yin, George G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461462934 
776 0 8 |i Printed edition:  |z 9781461462910 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8201 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-6292-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)