Cargando…

Drinfeld Moduli Schemes and Automorphic Forms The Theory of Elliptic Modules with Applications /

Drinfeld Moduli Schemes and Automorphic Forms: The Theory of Elliptic Modules with Applications is based on the author's original work establishing the correspondence between ell-adic rank r Galois representations and automorphic representations of GL(r) over a function field, in the local case...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Flicker, Yuval Z. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-5888-3
003 DE-He213
005 20220114120716.0
007 cr nn 008mamaa
008 130107s2013 xxu| s |||| 0|eng d
020 |a 9781461458883  |9 978-1-4614-5888-3 
024 7 |a 10.1007/978-1-4614-5888-3  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Flicker, Yuval Z.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Drinfeld Moduli Schemes and Automorphic Forms  |h [electronic resource] :  |b The Theory of Elliptic Modules with Applications /  |c by Yuval Z Flicker. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a V, 150 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8201 
505 0 |a Elliptic Moduli -- Hecke Correspondences -- Trace Formulae -- Higher Recipropcity Laws. . 
520 |a Drinfeld Moduli Schemes and Automorphic Forms: The Theory of Elliptic Modules with Applications is based on the author's original work establishing the correspondence between ell-adic rank r Galois representations and automorphic representations of GL(r) over a function field, in the local case, and, in the global case, under a restriction at a single place. It develops Drinfeld's theory of elliptic modules, their moduli schemes and covering schemes, the simple trace formula, the fixed point formula, as well as the congruence relations and a "simple" converse theorem, not yet published anywhere. This version, based on a recent course taught by the author at The Ohio State University, is updated with references to research that has extended and developed the original work. The use of the theory of elliptic modules in the present work makes it accessible to graduate students, and it will serve as a valuable resource to facilitate an entrance to this fascinating area of mathematics. 
650 0 |a Number theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Algebra, Homological. 
650 0 |a Algebra. 
650 1 4 |a Number Theory. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461458876 
776 0 8 |i Printed edition:  |z 9781461458890 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8201 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-5888-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)