Cargando…

Smoothing Spline ANOVA Models

Nonparametric function estimation with stochastic data, otherwise known as smoothing, has been studied by several generations of statisticians. Assisted by the ample computing power in today's servers, desktops, and laptops, smoothing methods have been finding their ways into everyday data anal...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gu, Chong (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:2nd ed. 2013.
Colección:Springer Series in Statistics, 297
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-5369-7
003 DE-He213
005 20220119081229.0
007 cr nn 008mamaa
008 130125s2013 xxu| s |||| 0|eng d
020 |a 9781461453697  |9 978-1-4614-5369-7 
024 7 |a 10.1007/978-1-4614-5369-7  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Gu, Chong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Smoothing Spline ANOVA Models  |h [electronic resource] /  |c by Chong Gu. 
250 |a 2nd ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XVIII, 433 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X ;  |v 297 
505 0 |a Introduction -- Model Construction -- Regression with Gaussian-Type Responses -- More Splines -- Regression and Exponential Families -- Regression with Correlated Responses -- Probability Density Estimation -- Hazard Rate Estimation -- Asymptotic Convergence -- Penalized Pseudo Likelihood. 
520 |a Nonparametric function estimation with stochastic data, otherwise known as smoothing, has been studied by several generations of statisticians. Assisted by the ample computing power in today's servers, desktops, and laptops, smoothing methods have been finding their ways into everyday data analysis by practitioners. While scores of methods have proved successful for univariate smoothing, ones practical in multivariate settings number far less. Smoothing spline ANOVA models are a versatile family of smoothing methods derived through roughness penalties, that are suitable for both univariate and multivariate problems. In this book, the author presents a treatise on penalty smoothing under a unified framework. Methods are developed for (i) regression with Gaussian and non-Gaussian responses as well as with censored lifetime data; (ii) density and conditional density estimation under a variety of sampling schemes; and (iii) hazard rate estimation with censored life time data and covariates. The unifying themes are the general penalized likelihood method and the construction of multivariate models with built-in ANOVA decompositions. Extensive discussions are devoted to model construction, smoothing parameter selection, computation, and asymptotic convergence. 
650 0 |a Statistics . 
650 1 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461453703 
776 0 8 |i Printed edition:  |z 9781489989840 
776 0 8 |i Printed edition:  |z 9781461453680 
830 0 |a Springer Series in Statistics,  |x 2197-568X ;  |v 297 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-5369-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)