Cargando…

Data Correcting Approaches in Combinatorial Optimization

Data Correcting Approaches in Combinatorial Optimization focuses on algorithmic applications of the well known polynomially solvable special cases of computationally intractable problems. The purpose of this text is to design practically efficient algorithms for solving wide classes of combinatorial...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Goldengorin, Boris I. (Autor), Pardalos, Panos M. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Optimization,
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:Data Correcting Approaches in Combinatorial Optimization focuses on algorithmic applications of the well known polynomially solvable special cases of computationally intractable problems. The purpose of this text is to design practically efficient algorithms for solving wide classes of combinatorial optimization problems.  Researches, students and engineers will benefit from new bounds and branching rules in development efficient branch-and-bound type computational algorithms. This book examines applications for solving the Traveling Salesman Problem and its variations, Maximum Weight Independent Set Problem, Different Classes of Allocation and Cluster Analysis  as well as some classes of Scheduling Problems. Data Correcting Algorithms in Combinatorial Optimization  introduces the data correcting approach to algorithms which provide an answer to the following questions: how to construct a bound to the original intractable problem and find which element of the corrected instance  one should branch such that the total size of search tree will be minimized. The PC time needed for solving intractable problems will be adjusted with the requirements for solving real world problems.
Descripción Física:X, 114 p. 41 illus. online resource.
ISBN:9781461452867
ISSN:2191-575X