Cargando…

Linear-Quadratic Controls in Risk-Averse Decision Making Performance-Measure Statistics and Control Decision Optimization /

Linear-Quadratic Controls in Risk-Averse Decision Making   cuts across control engineering (control feedback and decision optimization) and statistics (post-design performance analysis) with a common theme: reliability increase seen from the responsive angle of incorporating and engineering multi-le...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pham, Khanh D. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Optimization,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-5079-5
003 DE-He213
005 20220119174712.0
007 cr nn 008mamaa
008 121026s2013 xxu| s |||| 0|eng d
020 |a 9781461450795  |9 978-1-4614-5079-5 
024 7 |a 10.1007/978-1-4614-5079-5  |2 doi 
050 4 |a QA402.5-402.6 
050 4 |a QA315-316 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
082 0 4 |a 515.64  |2 23 
100 1 |a Pham, Khanh D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Linear-Quadratic Controls in Risk-Averse Decision Making  |h [electronic resource] :  |b Performance-Measure Statistics and Control Decision Optimization /  |c by Khanh D. Pham. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 150 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2191-575X 
520 |a Linear-Quadratic Controls in Risk-Averse Decision Making   cuts across control engineering (control feedback and decision optimization) and statistics (post-design performance analysis) with a common theme: reliability increase seen from the responsive angle of incorporating and engineering multi-level performance robustness beyond the long-run average performance into control feedback design and decision making and complex dynamic systems from the start. This monograph provides a complete description of statistical optimal control (also known as cost-cumulant control) theory. In control problems and topics, emphasis is primarily placed on major developments attained and explicit connections between mathematical statistics of performance appraisals and decision and control optimization. Chapter summaries shed light on the relevance of developed results, which makes this monograph suitable for graduate-level lectures in applied mathematics and electrical engineering with systems-theoretic concentration, elective study or a reference for interested readers, researchers, and graduate students who are interested in theoretical constructs and design principles for stochastic controlled systems.  . 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a Mathematics-Data processing. 
650 0 |a Statistics . 
650 0 |a Dynamical systems. 
650 1 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Dynamical Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461450801 
776 0 8 |i Printed edition:  |z 9781461450788 
830 0 |a SpringerBriefs in Optimization,  |x 2191-575X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-5079-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)