Cargando…

Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders

Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders provides a survey of methods designed to aid clinicians in the diagnosis and monitoring of speech disorders such as dysarthria and dyspraxia, with an emphasis on the signal processing techniques, statistical v...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Baghai-Ravary, Ladan (Autor), Beet, Steve W. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-4574-6
003 DE-He213
005 20220117043502.0
007 cr nn 008mamaa
008 120807s2013 xxu| s |||| 0|eng d
020 |a 9781461445746  |9 978-1-4614-4574-6 
024 7 |a 10.1007/978-1-4614-4574-6  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Baghai-Ravary, Ladan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders  |h [electronic resource] /  |c by Ladan Baghai-Ravary, Steve W. Beet. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a VIII, 70 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-7388 
505 0 |a Introduction -- Speech Production and Perception -- Acoustic Effects of Speech Impairment -- Technology and Implementation -- Established Methods -- Novel Approaches -- The Future. 
520 |a Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders provides a survey of methods designed to aid clinicians in the diagnosis and monitoring of speech disorders such as dysarthria and dyspraxia, with an emphasis on the signal processing techniques, statistical validity of the results presented in the literature, and the appropriateness of methods that do not require specialized equipment, rigorously controlled recording procedures or highly skilled personnel to interpret results. Such techniques offer the promise of a simple and cost-effective, yet objective, assessment of a range of medical conditions, which would be of great value to clinicians. The ideal scenario would begin with the collection of examples of the clients' speech, either over the phone or using portable recording devices operated by non-specialist nursing staff. The recordings could then be analyzed initially to aid diagnosis of conditions, and subsequently to monitor the clients' progress and response to treatment. The automation of this process would allow more frequent and regular assessments to be performed, as well as providing greater objectivity. 
650 0 |a Signal processing. 
650 0 |a Medical informatics. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Health Informatics. 
700 1 |a Beet, Steve W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461445753 
776 0 8 |i Printed edition:  |z 9781461445739 
830 0 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-7388 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-4574-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)