Cargando…

Introduction to Piecewise Differentiable Equations

This brief provides an elementary introduction to the theory of piecewise differentiable functions with an emphasis on differentiable equations.  In the first chapter, two sample problems are used to motivate the study of this theory. The presentation is then developed using two basic tools for the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Scholtes, Stefan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Optimization,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-4340-7
003 DE-He213
005 20220114220211.0
007 cr nn 008mamaa
008 120731s2012 xxu| s |||| 0|eng d
020 |a 9781461443407  |9 978-1-4614-4340-7 
024 7 |a 10.1007/978-1-4614-4340-7  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Scholtes, Stefan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Piecewise Differentiable Equations  |h [electronic resource] /  |c by Stefan Scholtes. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a X, 133 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2191-575X 
520 |a This brief provides an elementary introduction to the theory of piecewise differentiable functions with an emphasis on differentiable equations.  In the first chapter, two sample problems are used to motivate the study of this theory. The presentation is then developed using two basic tools for the analysis of piecewise differentiable functions: the Bouligand derivative as the nonsmooth analogue of the classical derivative concept and the theory of piecewise affine functions as the combinatorial tool for the study of this approximation function. In the end, the results are combined to develop inverse and implicit function theorems for piecewise differentiable equations.  This Introduction to Piecewise Differentiable Equations will serve graduate students and researchers alike. The reader is assumed to be familiar with basic mathematical analysis and to have some familiarity with polyhedral theory. 
650 0 |a Mathematical analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 1 4 |a Analysis. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Calculus of Variations and Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461443391 
776 0 8 |i Printed edition:  |z 9781461443414 
830 0 |a SpringerBriefs in Optimization,  |x 2191-575X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-4340-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)