Cargando…

Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE

This book collects some recent developments in stochastic control theory with applications to financial mathematics. In the first part of the volume, standard stochastic control problems are addressed from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Touzi, Nizar (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Fields Institute Monographs, 29
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-4286-8
003 DE-He213
005 20230810160633.0
007 cr nn 008mamaa
008 120925s2013 xxu| s |||| 0|eng d
020 |a 9781461442868  |9 978-1-4614-4286-8 
024 7 |a 10.1007/978-1-4614-4286-8  |2 doi 
050 4 |a H61.25 
072 7 |a PBW  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
072 7 |a K  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Touzi, Nizar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE  |h [electronic resource] /  |c by Nizar Touzi. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a X, 214 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fields Institute Monographs,  |x 2194-3079 ;  |v 29 
505 0 |a Preface -- 1. Conditional Expectation and Linear Parabolic PDEs -- 2. Stochastic Control and Dynamic Programming -- 3. Optimal Stopping and Dynamic Programming -- 4. Solving Control Problems by Verification -- 5. Introduction to Viscosity Solutions -- 6. Dynamic Programming Equation in the Viscosity Sense -- 7. Stochastic Target Problems -- 8. Second Order Stochastic Target Problems -- 9. Backward SDEs and Stochastic Control -- 10. Quadratic Backward SDEs -- 11. Probabilistic Numerical Methods for Nonlinear PDEs -- 12. Introduction to Finite Differences Methods -- References. 
520 |a This book collects some recent developments in stochastic control theory with applications to financial mathematics. In the first part of the volume, standard stochastic control problems are addressed from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on regularity issues and, in particular, on the behavior of the value function near the boundary. Then a quick review of the main tools from viscosity solutions allowing one to overcome all regularity problems is provided. The second part is devoted to the class of stochastic target problems, which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows; namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part presents an overview of backward stochastic differential equations and their extensions to the quadratic case. Backward stochastic differential equations are intimately related to the stochastic version of Pontryagin's maximum principle and can be viewed as a strong version of stochastic target problems in the non-Markov context. The main applications to the hedging problem under market imperfections, the optimal investment problem in the exponential or power expected utility framework, and some recent developments in the context of a Nash equilibrium model for interacting investors, are presented. The book concludes with a review of the numerical approximation techniques for nonlinear partial differential equations based on monotonic schemes methods in the theory of viscosity solutions. 
650 0 |a Social sciences  |x Mathematics. 
650 0 |a Probabilities. 
650 0 |a Differential equations. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics in Business, Economics and Finance. 
650 2 4 |a Probability Theory. 
650 2 4 |a Differential Equations. 
650 2 4 |a Calculus of Variations and Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461442875 
776 0 8 |i Printed edition:  |z 9781493900428 
776 0 8 |i Printed edition:  |z 9781461442851 
830 0 |a Fields Institute Monographs,  |x 2194-3079 ;  |v 29 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-4286-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)