Cargando…

Data Mining Applications Using Artificial Adaptive Systems

This volume directly addresses the complexities involved in data mining and the development of new algorithms, built on an underlying theory consisting of linear and non-linear dynamics, data selection, filtering, and analysis, while including analytical projection and prediction. The results derive...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Tastle, William J. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-4223-3
003 DE-He213
005 20220114203050.0
007 cr nn 008mamaa
008 120824s2013 xxu| s |||| 0|eng d
020 |a 9781461442233  |9 978-1-4614-4223-3 
024 7 |a 10.1007/978-1-4614-4223-3  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Data Mining Applications Using Artificial Adaptive Systems  |h [electronic resource] /  |c edited by William J. Tastle. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a VII, 275 p. 135 illus., 111 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Assessing Post-Radiotherapy Treatment involving Brain Volume Differences in Children -- J-Net: an Adaptive System for Computer-Aided Diagnosis in Lung Nodule Characterization -- Population Algorithm: A New Method of Multi-Dimensional Scaling -- Semantics of Point Spaces through the Topological Weighted Centroid and Other Mathematical Quantities -- Meta Net: A New Meta-Classifier Family -- Optimal Informational Sorting: The ACS-ULA Approach -- GUACAMOLE: A New Paradigm for Unsupervised Competitive Learning -- Spatiotemporal Mining: A Systematic Approach to Discrete Diffusion Models for Time and Space Extrapolation. 
520 |a This volume directly addresses the complexities involved in data mining and the development of new algorithms, built on an underlying theory consisting of linear and non-linear dynamics, data selection, filtering, and analysis, while including analytical projection and prediction. The results derived from the analysis are then further manipulated such that a visual representation is derived with an accompanying analysis. The book brings very current methods of analysis to the forefront of the discipline, provides researchers and practitioners the mathematical underpinning of the algorithms, and the non-specialist with a visual representation such that a valid understanding of the meaning of the adaptive system can be attained with careful attention to the visual representation. The book presents, as a collection of documents, sophisticated and meaningful methods that can be immediately understood and applied to various other disciplines of research. The content is composed of chapters addressing: An application of adaptive systems methodology in the field of post-radiation treatment involving brain volume differences in children; A new adaptive system for computer-aided diagnosis of the characterization of lung nodules; A new method of multi-dimensional scaling with minimal loss of information; A description of the semantics of point spaces with an application on the analysis of terrorist attacks in Afghanistan; The description of a new family of meta-classifiers; A new method of optimal informational sorting; A general method for the unsupervised adaptive classification for learning; and the presentation of two new theories, one in target diffusion and the other in twisting theory. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence-Data processing. 
650 0 |a Biometric identification. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Data Science. 
650 2 4 |a Biometrics. 
700 1 |a Tastle, William J.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461442240 
776 0 8 |i Printed edition:  |z 9781461442226 
776 0 8 |i Printed edition:  |z 9781493944453 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-4223-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)