Cargando…

Analyzing Markov Chains using Kronecker Products Theory and Applications /

Kronecker products are used to define the underlying Markov chain (MC) in various modeling formalisms, including compositional Markovian models, hierarchical Markovian models, and stochastic process algebras. The motivation behind using a Kronecker structured representation rather than a flat one is...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dayar, Tugrul (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-4190-8
003 DE-He213
005 20220114105226.0
007 cr nn 008mamaa
008 120723s2012 xxu| s |||| 0|eng d
020 |a 9781461441908  |9 978-1-4614-4190-8 
024 7 |a 10.1007/978-1-4614-4190-8  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Dayar, Tugrul.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analyzing Markov Chains using Kronecker Products  |h [electronic resource] :  |b Theory and Applications /  |c by Tugrul Dayar. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a IX, 86 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8201 
505 0 |a Introduction -- Background -- Kronecker representation -- Preprocessing -- Block iterative methods for Kronecker products -- Preconditioned projection methods -- Multilevel methods -- Decompositional methods -- Matrix analytic methods. 
520 |a Kronecker products are used to define the underlying Markov chain (MC) in various modeling formalisms, including compositional Markovian models, hierarchical Markovian models, and stochastic process algebras. The motivation behind using a Kronecker structured representation rather than a flat one is to alleviate the storage requirements associated with the MC. With this approach, systems that are an order of magnitude larger can be analyzed on the same platform. The developments in the solution of such MCs are reviewed from an algebraic point of view and possible areas for further research are indicated with an emphasis on preprocessing using reordering, grouping, and lumping and numerical analysis using block iterative, preconditioned projection, multilevel, decompositional, and matrix analytic methods. Case studies from closed queueing networks and stochastic chemical kinetics are provided to motivate decompositional and matrix analytic methods, respectively. 
650 0 |a Probabilities. 
650 0 |a Numerical analysis. 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Probability and Statistics in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461441892 
776 0 8 |i Printed edition:  |z 9781461441915 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8201 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-4190-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)