Cargando…

Ramanujan's Lost Notebook Part IV /

In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon des...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Andrews, George E. (Autor), Berndt, Bruce C. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-4081-9
003 DE-He213
005 20220119024029.0
007 cr nn 008mamaa
008 130604s2013 xxu| s |||| 0|eng d
020 |a 9781461440819  |9 978-1-4614-4081-9 
024 7 |a 10.1007/978-1-4614-4081-9  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Andrews, George E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Ramanujan's Lost Notebook  |h [electronic resource] :  |b Part IV /  |c by George E. Andrews, Bruce C. Berndt. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XVII, 439 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- 1 Introduction.- 2 Double Series of Bessel Functions and the Circle and Divisor Problems.- 3 Koshliakov's Formula and Guinand's Formula.- 4 Theorems Featuring the Gamma Function.- 5 Hypergeometric Series.- 6 Euler's Constant.- 7 Problems in Diophantine Approximation.- 8 Number Theory.- 9 Divisor Sums -- 10 Identities Related to the Riemann Zeta Function and Periodic Zeta Functions -- 11 Two Partial Unpublished Manuscripts on Sums Involving Primes.- 12 Infinite Series -- 13 A Partial Manuscript on Fourier and Laplace Transforms -- 14 Integral Analogues of Theta Functions adn Gauss Sums -- 15 Functional Equations for Products of Mellin Transforms -- 16 Infinite Products -- 17 A Preliminary Version of Ramanujan's Paper, On the Integral ∫_0^x tan^(-1)t)/t dt -- 18 A Partial Manuscript Connected with Ramanujan's Paper, Some Definite Integrals.- 19 Miscellaneous Results in Analysis -- 20 Elementary Results -- 21 A Strange, Enigmatic Partial Manuscript.-  Location Guide -- Provenance -- References -- Index. 
520 |a In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This volume is the fourth of five volumes that the authors plan to write on Ramanujan's lost notebook.  In contrast to the first three books on Ramanujan's Lost Notebook, the fourth book does not focus on q-series.  Most of the entries examined in this volume fall under the purviews of number theory and classical analysis.  Several incomplete manuscripts of Ramanujan published by Narosa with the lost notebook are discussed.  Three of the partial manuscripts are on diophantine approximation, and others are in classical Fourier analysis and prime number theory.   Most of the entries in number theory fall under the umbrella of classical analytic number theory.   Perhaps the most intriguing entries are connected with the classical, unsolved circle and divisor problems. Review from the second volume: "Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited." - MathSciNet Review from the first volume: "Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete." - Gazette of the Australian Mathematical Society. 
650 0 |a Number theory. 
650 0 |a Mathematical analysis. 
650 0 |a Fourier analysis. 
650 0 |a Special functions. 
650 1 4 |a Number Theory. 
650 2 4 |a Analysis. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Special Functions. 
700 1 |a Berndt, Bruce C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461440802 
776 0 8 |i Printed edition:  |z 9781461440826 
776 0 8 |i Printed edition:  |z 9781489991751 
776 0 8 |i Printed edition:  |z 9781493976270 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-4081-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)