Cargando…

Modeling Infectious Disease Parameters Based on Serological and Social Contact Data A Modern Statistical Perspective /

Mathematical epidemiology of infectious diseases usually involves describing the flow of individuals between mutually exclusive infection states. One of the key parameters describing the transition from the susceptible to the infected class is the hazard of infection, often referred to as the force...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hens, Niel (Autor), Shkedy, Ziv (Autor), Aerts, Marc (Autor), Faes, Christel (Autor), Van Damme, Pierre (Autor), Beutels, Philippe (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Statistics for Biology and Health, 63
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-4072-7
003 DE-He213
005 20220119030129.0
007 cr nn 008mamaa
008 120831s2012 xxu| s |||| 0|eng d
020 |a 9781461440727  |9 978-1-4614-4072-7 
024 7 |a 10.1007/978-1-4614-4072-7  |2 doi 
050 4 |a QH323.5 
072 7 |a PBT  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 570.15195  |2 23 
100 1 |a Hens, Niel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Modeling Infectious Disease Parameters Based on Serological and Social Contact Data  |h [electronic resource] :  |b A Modern Statistical Perspective /  |c by Niel Hens, Ziv Shkedy, Marc Aerts, Christel Faes, Pierre Van Damme, Philippe Beutels. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XVI, 300 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Biology and Health,  |x 2197-5671 ;  |v 63 
505 0 |a Mathematical models for infectious diesease -- The static model -- The dynamic model -- The stochastic model -- Implementation of models in MATLAB -- Data sources for modelling infectious diseases -- Estimation from serological data -- Parametric models for teh prevalence and the force of infection -- Non-parametric approaches to model the prevalence and force of infection -- Semi-parametric approaches to model the prevalence and force of infection -- A Bayesian approach -- Modelling the prevalence and the force of infection direction from antibody levels -- Modelling multivariate serological data -- Estimation from other data sources -- Estimating mixing patterns and Ro in a heterogenous population -- Modelling in a homogeneous population -- Modelling in a heterogeneous population -- Modelling AIDS outbreak data -- Modelling hepatitis C among injection drug users -- Modelling dengue -- Modelling bovine herpes virus in cattle. 
520 |a Mathematical epidemiology of infectious diseases usually involves describing the flow of individuals between mutually exclusive infection states. One of the key parameters describing the transition from the susceptible to the infected class is the hazard of infection, often referred to as the force of infection. The force of infection reflects the degree of contact with potential for transmission between infected and susceptible individuals. The mathematical relation between the force of infection and effective contact patterns is generally assumed to be subjected to the mass action principle, which yields the necessary information to estimate the basic reproduction number, another key parameter in infectious disease epidemiology.                                           It is within this context that the Center for Statistics (CenStat, I-Biostat, Hasselt University) and the Centre for the Evaluation of Vaccination and the Centre for Health Economic Research and Modelling Infectious Diseases (CEV, CHERMID, Vaccine and Infectious Disease Institute, University of Antwerp) have collaborated over the past 15 years. This book demonstrates the past and current research activities of these institutes and can be considered to be a milestone in this collaboration.                                                                                                                        This book is focused on the application of modern statistical methods and models to estimate infectious disease parameters. We want to provide the readers with software guidance, such as R packages, and with data, as far as they can be made publicly available.  . 
650 0 |a Biometry. 
650 0 |a Statistics . 
650 1 4 |a Biostatistics. 
650 2 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a Shkedy, Ziv.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Aerts, Marc.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Faes, Christel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Van Damme, Pierre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Beutels, Philippe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461440710 
776 0 8 |i Printed edition:  |z 9781461440734 
776 0 8 |i Printed edition:  |z 9781489987969 
830 0 |a Statistics for Biology and Health,  |x 2197-5671 ;  |v 63 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-4072-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)