Cargando…

Approximation Methods for Polynomial Optimization Models, Algorithms, and Applications /

Polynomial optimization have been a hot research topic for the past few years and its applications range from Operations Research, biomedical engineering, investment science, to quantum mechanics, linear algebra, and signal processing, among many others. In this brief the authors discuss some import...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Li, Zhening (Autor), He, Simai (Autor), Zhang, Shuzhong (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Optimization,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-3984-4
003 DE-He213
005 20220119050800.0
007 cr nn 008mamaa
008 120723s2012 xxu| s |||| 0|eng d
020 |a 9781461439844  |9 978-1-4614-3984-4 
024 7 |a 10.1007/978-1-4614-3984-4  |2 doi 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
100 1 |a Li, Zhening.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Approximation Methods for Polynomial Optimization  |h [electronic resource] :  |b Models, Algorithms, and Applications /  |c by Zhening Li, Simai He, Shuzhong Zhang. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a VIII, 124 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Optimization,  |x 2191-575X 
505 0 |a 1.  Introduction.-2. Polynomial over the Euclidean Ball -- 3. Extensions of the Constraint Sets -- 4. Applications -- 5. Concluding Remarks. 
520 |a Polynomial optimization have been a hot research topic for the past few years and its applications range from Operations Research, biomedical engineering, investment science, to quantum mechanics, linear algebra, and signal processing, among many others. In this brief the authors discuss some important subclasses of polynomial optimization models arising from various applications, with a focus on approximations algorithms with guaranteed worst case performance analysis. The brief presents a clear view of the basic ideas underlying the design of such algorithms and the benefits are highlighted by illustrative examples showing the possible applications.   This timely treatise will appeal to researchers and graduate students in the fields of optimization, computational mathematics, Operations Research, industrial engineering, and computer science. 
650 0 |a Mathematical optimization. 
650 0 |a Mathematical models. 
650 0 |a Algorithms. 
650 0 |a Mathematics. 
650 1 4 |a Optimization. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Algorithms. 
650 2 4 |a Applications of Mathematics. 
700 1 |a He, Simai.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhang, Shuzhong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461439851 
776 0 8 |i Printed edition:  |z 9781461439837 
830 0 |a SpringerBriefs in Optimization,  |x 2191-575X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-3984-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)