Cargando…

Markov Bases in Algebraic Statistics

Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Gröbner bases for constructing a connected Markov chain for...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Aoki, Satoshi (Autor), Hara, Hisayuki (Autor), Takemura, Akimichi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Springer Series in Statistics, 199
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-3719-2
003 DE-He213
005 20220116105006.0
007 cr nn 008mamaa
008 120723s2012 xxu| s |||| 0|eng d
020 |a 9781461437192  |9 978-1-4614-3719-2 
024 7 |a 10.1007/978-1-4614-3719-2  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Aoki, Satoshi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Markov Bases in Algebraic Statistics  |h [electronic resource] /  |c by Satoshi Aoki, Hisayuki Hara, Akimichi Takemura. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 300 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X ;  |v 199 
505 0 |a Exact tests for contingency tables and discrete exponential families -- Markov chain Monte Carlo methods over discrete sample space -- Toric ideals and their Gröbner bases -- Definition of Markov bases and other bases -- Structure of minimal Markov bases -- Method of distance reduction -- Symmetry of Markov bases -- Decomposable models of contingency tables -- Markov basis for no-three-factor interaction models and some other hierarchical models -- Two-way tables with structural zeros and fixed subtable sums -- Regular factorial designs with discrete response variables -- Group-wise selection models -- The set of moves connecting specific fibers -- Disclosure limitation problem and Markov basis -- Gröbner basis techniques for design of experiments -- Running Markov chain without Markov bases -- References -- Index. 
520 |a Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Gröbner bases for constructing a connected Markov chain for performing conditional tests of a discrete exponential family. In this book we take up this topic and present a detailed summary of developments following the seminal work of Diaconis and Sturmfels. This book is intended for statisticians with minimal backgrounds in algebra. As we ourselves learned algebraic notions through working on statistical problems and collaborating with notable algebraists, we hope that this book with many practical statistical problems is useful for statisticians to start working on the field. Satoshi Aoki obtained his doctoral degree from University of Tokyo in 2004 and is currently an associate professor in Graduate school of Science and Engineering, Kagoshima University. Hisayuki Hara obtained his doctoral degree from University of Tokyo in 1999 and is currently an associate professor in Faculty of Economics, Niigata University. Akimichi Takemura obtained his doctoral degree from Stanford University in 1982 and is currently a professor in Graduate School of Information Science and Technology, University of Tokyo. 
650 0 |a Statistics . 
650 0 |a Universal algebra. 
650 0 |a Mathematics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a General Algebraic Systems. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Hara, Hisayuki.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Takemura, Akimichi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461437185 
776 0 8 |i Printed edition:  |z 9781461437208 
776 0 8 |i Printed edition:  |z 9781489999092 
830 0 |a Springer Series in Statistics,  |x 2197-568X ;  |v 199 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-3719-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)