Cargando…

The General Theory of Relativity A Mathematical Exposition /

 The General Theory of Relativity: A Mathematical Exposition will serve readers as a modern mathematical introduction to the general theory of relativity. Throughout the book, examples, worked-out problems, and exercises (with hints and solutions) are furnished. Topics in this book include, but are...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Das, Anadijiban (Autor), DeBenedictis, Andrew (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-3658-4
003 DE-He213
005 20220117123516.0
007 cr nn 008mamaa
008 120626s2012 xxu| s |||| 0|eng d
020 |a 9781461436584  |9 978-1-4614-3658-4 
024 7 |a 10.1007/978-1-4614-3658-4  |2 doi 
050 4 |a QC178 
072 7 |a PHDV  |2 bicssc 
072 7 |a SCI061000  |2 bisacsh 
072 7 |a PHDV  |2 thema 
082 0 4 |a 530.1  |2 23 
100 1 |a Das, Anadijiban.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The General Theory of Relativity  |h [electronic resource] :  |b A Mathematical Exposition /  |c by Anadijiban Das, Andrew DeBenedictis. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XXVI, 678 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Tensor Analysis on Differentiable Manifolds -- The Pseudo-Riemannian Space-Time Manifold M4 -- Spherically Symmetric Space-Time Domains -- Static and Stationary Space-Time Domains -- Black Holes -- Cosmology -- Algebraic Classification of Field Equations -- The Coupled Einstein-Maxwell-Klein-Gordon Equations -- Appendix 1: Variational Derivation of Differential Equations -- Appendix 2: Partial Differential Equations -- Appendix 3: Canonical Forms of Matrices -- Appendix 4: Conformally Flat Space-Times and "the Fifth Force" -- Appendix 5: Linearized Theory and Gravitational Waves -- Appendix 6: Exotic Solutions: Wormholes, Warp-Drives, and Time Machines -- Appendix 7: Gravitational Instantons -- Appendix 8: Computational Symbolic Algebra Calculations -- References -- Index of Symbols -- Index. 
520 |a  The General Theory of Relativity: A Mathematical Exposition will serve readers as a modern mathematical introduction to the general theory of relativity. Throughout the book, examples, worked-out problems, and exercises (with hints and solutions) are furnished. Topics in this book include, but are not limited to: • tensor analysis • the special theory of relativity • the general theory of relativity and Einstein's field equations • spherically symmetric solutions and experimental confirmations • static and stationary space-time domains • black holes • cosmological models • algebraic classifications and the Newman-Penrose equations • the coupled Einstein-Maxwell-Klein-Gordon equations • appendices covering mathematical supplements and special topics Mathematical rigor, yet very clear presentation of the topics make this book a unique text for both university students and research scholars. Anadijiban Das has taught courses on Relativity Theory at The University College of Dublin, Ireland; Jadavpur University, India; Carnegie-Mellon University, USA; and Simon Fraser University, Canada. His major areas of research include, among diverse topics, the mathematical aspects of general relativity theory. Andrew DeBenedictis has taught courses in Theoretical Physics at Simon Fraser University, Canada, and is also a member of The Pacific Institute for the Mathematical Sciences. His research interests include quantum gravity, classical gravity, and semi-classical gravity. 
650 0 |a Gravitation. 
650 0 |a Mathematical physics. 
650 0 |a Cosmology. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Classical and Quantum Gravity. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Cosmology. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
700 1 |a DeBenedictis, Andrew.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781489987174 
776 0 8 |i Printed edition:  |z 9781461436577 
776 0 8 |i Printed edition:  |z 9781461436591 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-3658-4  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)