Cargando…

Astrostatistics and Data Mining

This volume provides an overview of the field of Astrostatistics understood as the sub-discipline dedicated to the statistical analysis of astronomical data. It presents examples of the application of the various methodologies now available to current open issues in astronomical research. The techni...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Sarro, Luis Manuel (Editor ), Eyer, Laurent (Editor ), O'Mullane, William (Editor ), De Ridder, Joris (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Springer Series in Astrostatistics, 2
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-3323-1
003 DE-He213
005 20220115040512.0
007 cr nn 008mamaa
008 120803s2012 xxu| s |||| 0|eng d
020 |a 9781461433231  |9 978-1-4614-3323-1 
024 7 |a 10.1007/978-1-4614-3323-1  |2 doi 
050 4 |a QB1-991 
072 7 |a PG  |2 bicssc 
072 7 |a SCI004000  |2 bisacsh 
072 7 |a PG  |2 thema 
082 0 4 |a 520  |2 23 
082 0 4 |a 500.5  |2 23 
245 1 0 |a Astrostatistics and Data Mining  |h [electronic resource] /  |c edited by Luis Manuel Sarro, Laurent Eyer, William O'Mullane, Joris De Ridder. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 272 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Astrostatistics,  |x 2199-1049 ;  |v 2 
505 0 |a ??? 'Science with Gaia: how will we deal with a complex billion-source  catalogue and data archive?' by Anthony Brown (Leiden University,Netherlads) -- 'Recent Advances in cosmological Bayesian model comparison' by  Roberto Trotta (University College London, UK) -- 'The Art of Data Science' by  Matthew Graham (Center for Advanced  Computing Research, California Institute  of Technology, USA) -- 'Astronomical Surveys: from SDSS to LSST' by Robert Lupton  (Princeton University, USA) -- 'Exoplanet demography, quasar target selection, and probabilistic  redshift estimation:  Hierarchical models for density estimation,  classification, and regression.' by David Hogg (New York University,  USA) -- 'Learning to disentangle Exoplanet signals from correlated noise'  by Suzanne Aigrain (Oxford University, UK) -- Astroinformatics and data mining: how to cope with the data  tsunami' by Giuseppe Longo (Federico II University, Italy) -- Advanced statistical techniques for the processing of astronomical data: time series, images, low number statistics for high energy photons, heteroskedastic data, non-detections -- Challenges in the data mining of astronomical databases: the class imbalance in training sets or how to define prior robust preprocessing for supervised/unsupervised classification robust inference with heterogeneous datasets, how to combine observations, models, priors, etc in a training/test set error propagation -- The challenge of petabyte size databases: scalability, parallel computing, accuracy -- Geometric data organization, sky indexing for efficient data retrieval, intelligent access to petabyte size databases -- Knowledge Discovery in astronomical archives: outlier detection, new object types, parametric inference, model fitting and model selection, etc -- Combining the classical domain knowledge approach with machine learning techniques -- Global approaches for global datasets. The Galaxy zoo and the Universe zoo -- The Virtual Observatories, Data Mining and Astrostatistics: software, standards, protocols.    . 
520 |a This volume provides an overview of the field of Astrostatistics understood as the sub-discipline dedicated to the statistical analysis of astronomical data. It presents examples of the application of the various methodologies now available to current open issues in astronomical research. The technical aspects related to the scientific analysis of the upcoming petabyte-scale databases are emphasized given the importance that scalable Knowledge Discovery techniques will have for the full exploitation of these databases. Based on the 2011 Astrostatistics and Data Mining in Large Astronomical Databases conference and school, this volume gathers examples of the work by leading authors in the areas of Astrophysics and Statistics, including a significant contribution from the various teams that prepared for the processing and analysis of the Gaia data. 
650 0 |a Astronomy. 
650 0 |a Statistics . 
650 0 |a Astrophysics. 
650 1 4 |a Astronomy, Cosmology and Space Sciences. 
650 2 4 |a Statistics. 
650 2 4 |a Astrophysics. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a Sarro, Luis Manuel.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Eyer, Laurent.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a O'Mullane, William.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a De Ridder, Joris.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461433248 
776 0 8 |i Printed edition:  |z 9781489999177 
776 0 8 |i Printed edition:  |z 9781461433224 
830 0 |a Springer Series in Astrostatistics,  |x 2199-1049 ;  |v 2 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-3323-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)