Cargando…

Pyomo - Optimization Modeling in Python

This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Modeling is a fundamental process in many aspects of scient...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hart, William E. (Autor), Laird, Carl (Autor), Watson, Jean-Paul (Autor), Woodruff, David L. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Springer Optimization and Its Applications, 67
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-3226-5
003 DE-He213
005 20220817075720.0
007 cr nn 008mamaa
008 120214s2012 xxu| s |||| 0|eng d
020 |a 9781461432265  |9 978-1-4614-3226-5 
024 7 |a 10.1007/978-1-4614-3226-5  |2 doi 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
100 1 |a Hart, William E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Pyomo - Optimization Modeling in Python  |h [electronic resource] /  |c by William E. Hart, Carl Laird, Jean-Paul Watson, David L. Woodruff. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XVIII, 238 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6836 ;  |v 67 
505 0 |a Preface -- 1. Introduction -- 2. Pyomo Modeling Strategies -- 3. Model Components: Variables, Objectives and Constraints -- 4. Model Components: Sets and Parameters -- 5. Mischellaneous Model Components and Utility Functions -- 6. Initializing Abstract Models with Data Command Files -- 7. The Pyomo Command-Line Interface -- 8. Nonlinear Programming with Pyomo -- 9. Stochastic Programming Extensions -- 10. Scripting and Algorithm Development -- A. Installing Coopr -- B. A Brief Python Tutorial -- C. Pyomo and Coopr: The Bigger Picture -- Index. 
520 |a This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Modeling is a fundamental process in many aspects of scientific research, engineering, and business. This text beautifully illustrates the breadth of the modeling capabilities that are supported by this new software and its handling of complex real-world applications.   Pyomo is an open source software package for formulating and solving large-scale optimization problems. The software extends the modeling approach supported by modern AML (Algebraic Modeling Language) tools. Pyomo is a flexible, extensible, and portable AML that is embedded in Python, a full-featured scripting language. Python is a powerful and dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions.   The text begins with a tutorial on simple linear and integer programming models. Information needed to install and get started with the software is also provided. A detailed reference of Pyomo's modeling components is illustrated with extensive examples, including a discussion of how to load data from sources like spreadsheets and databases. The final chapters cover advanced topics such as nonlinear models, stochastic models, and scripting examples. 
650 0 |a Mathematical optimization. 
650 0 |a Computer simulation. 
650 0 |a Mathematics-Data processing. 
650 0 |a Computer science-Mathematics. 
650 0 |a Computer software. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 1 4 |a Optimization. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Mathematical Software. 
650 2 4 |a Operations Research, Management Science . 
700 1 |a Laird, Carl.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Watson, Jean-Paul.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Woodruff, David L.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781489993250 
776 0 8 |i Printed edition:  |z 9781461432272 
776 0 8 |i Printed edition:  |z 9781461432258 
830 0 |a Springer Optimization and Its Applications,  |x 1931-6836 ;  |v 67 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-3226-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)