Cargando…

Mining Text Data

Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Aggarwal, Charu C. (Editor ), Zhai, ChengXiang (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-3223-4
003 DE-He213
005 20220117150522.0
007 cr nn 008mamaa
008 120202s2012 xxu| s |||| 0|eng d
020 |a 9781461432234  |9 978-1-4614-3223-4 
024 7 |a 10.1007/978-1-4614-3223-4  |2 doi 
050 4 |a QA76.9.D3 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.74  |2 23 
245 1 0 |a Mining Text Data  |h [electronic resource] /  |c edited by Charu C. Aggarwal, ChengXiang Zhai. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 524 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a An Introduction to Text Mining -- Information Extraction from Text -- A Survey of Text Summarization Techniques -- A Survey of Text Clustering Algorithms -- Dimensionality Reduction and Topic Modeling -- A Survey of Text Classification Algorithms -- Transfer Learning for Text Mining -- Probabilistic Models for Text Mining -- Mining Text Streams -- Translingual Mining from Text Data -- Text Mining in Multimedia -- Text Analytics in Social Media -- A Survey of Opinion Mining and Sentiment Analysis -- Biomedical Text Mining: A Survey of Recent Progress -- Index. 
520 |a Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Application software. 
650 0 |a Computer networks . 
650 0 |a Multimedia systems. 
650 1 4 |a Database Management. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Multimedia Information Systems. 
700 1 |a Aggarwal, Charu C.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zhai, ChengXiang.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461432227 
776 0 8 |i Printed edition:  |z 9781489989208 
776 0 8 |i Printed edition:  |z 9781461432241 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-3223-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)