Cargando…

Network Inference in Molecular Biology A Hands-on Framework /

Inferring gene regulatory networks is a difficult problem to solve due to the relative scarcity of data compared to the potential size of the networks. While researchers have developed techniques to find some of the underlying network structure, there is still no one-size-fits-all algorithm for ever...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lingeman, Jesse M. (Autor), Shasha, Dennis (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Electrical and Computer Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-3113-8
003 DE-He213
005 20220117114832.0
007 cr nn 008mamaa
008 120523s2012 xxu| s |||| 0|eng d
020 |a 9781461431138  |9 978-1-4614-3113-8 
024 7 |a 10.1007/978-1-4614-3113-8  |2 doi 
050 4 |a QH324.2-324.25 
072 7 |a PS  |2 bicssc 
072 7 |a UY  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a PSAX  |2 thema 
082 0 4 |a 570.285  |2 23 
082 0 4 |a 570.113  |2 23 
100 1 |a Lingeman, Jesse M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Network Inference in Molecular Biology  |h [electronic resource] :  |b A Hands-on Framework /  |c by Jesse M. Lingeman, Dennis Shasha. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a IX, 100 p. 58 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8120 
505 0 |a The Gene Network Inference Problem -- Experimental Inputs -- Running Examples -- Overall Workflow of Inference -- Sample Pipelines -- Roll Your Own Pipeline -- Appendix. 
520 |a Inferring gene regulatory networks is a difficult problem to solve due to the relative scarcity of data compared to the potential size of the networks. While researchers have developed techniques to find some of the underlying network structure, there is still no one-size-fits-all algorithm for every data set. Network Inference in Molecular Biology examines the current techniques used by researchers, and provides key insights into which algorithms best fit a collection of data. Through a series of in-depth examples, the book also outlines how to mix-and-match algorithms, in order to create one tailored to a specific data situation. Network Inference in Molecular Biology is intended for advanced-level students and researchers as a reference guide. Practitioners and professionals working in a related field will also find this book valuable. 
650 0 |a Bioinformatics. 
650 0 |a Algorithms. 
650 1 4 |a Computational and Systems Biology. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Algorithms. 
700 1 |a Shasha, Dennis.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461431145 
776 0 8 |i Printed edition:  |z 9781461431121 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8120 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-3113-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)