Cargando…

Creating New Medical Ontologies for Image Annotation A Case Study /

Creating New Medical Ontologies for Image Annotation focuses on the problem of the medical images automatic annotation process, which is solved in an original manner by the authors. All the steps of this process are described in detail with algorithms, experiments and results. The original algorithm...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Stanescu, Liana (Autor), Burdescu, Dumitru Dan (Autor), Brezovan, Marius (Autor), Mihai, Cristian Gabriel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Electrical and Computer Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-1909-9
003 DE-He213
005 20220112141039.0
007 cr nn 008mamaa
008 111214s2012 xxu| s |||| 0|eng d
020 |a 9781461419099  |9 978-1-4614-1909-9 
024 7 |a 10.1007/978-1-4614-1909-9  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Stanescu, Liana.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Creating New Medical Ontologies for Image Annotation  |h [electronic resource] :  |b A Case Study /  |c by Liana Stanescu, Dumitru Dan Burdescu, Marius Brezovan, Cristian Gabriel Mihai. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a VIII, 111 p. 27 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8120 
505 0 |a Content Based Image Retrieval in Medical Images Databases -- Medical Images Segmentation -- Ontologies -- Medical Images Annotation -- Semantic Based Image Retrieval -- Object Oriented Medical Annotation System. 
520 |a Creating New Medical Ontologies for Image Annotation focuses on the problem of the medical images automatic annotation process, which is solved in an original manner by the authors. All the steps of this process are described in detail with algorithms, experiments and results. The original algorithms proposed by authors are compared with other efficient similar algorithms. In addition, the authors treat the problem of creating ontologies in an automatic way, starting from Medical Subject Headings (MESH). They have presented some efficient and relevant annotation models and also the basics of the annotation model used by the proposed system: Cross Media Relevance Models. Based on a text query the system will retrieve the images that contain objects described by the keywords. 
650 0 |a Signal processing. 
650 0 |a Radiology. 
650 0 |a Computer vision. 
650 0 |a Algorithms. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Radiology. 
650 2 4 |a Computer Vision. 
650 2 4 |a Algorithms. 
700 1 |a Burdescu, Dumitru Dan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Brezovan, Marius.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Mihai, Cristian Gabriel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461419105 
776 0 8 |i Printed edition:  |z 9781461419082 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8120 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-1909-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)