Fractal-Based Methods in Analysis
The idea of modeling the behavior of phenomena at multiple scales has become a useful tool in both pure and applied mathematics. Fractal-based techniques lie at the heart of this area, as fractals are inherently multiscale objects; they very often describe nonlinear phenomena better than traditional...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Kunze, Herb (Autor), La Torre, Davide (Autor), Mendivil, Franklin (Autor), Vrscay, Edward R. (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer US : Imprint: Springer,
2012.
|
Edición: | 1st ed. 2012. |
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles
por: Han, Maoan, et al.
Publicado: (2012) -
Nonlinear Oscillations of Hamiltonian PDEs
por: Berti, Massimiliano
Publicado: (2007) -
Construction of Global Lyapunov Functions Using Radial Basis Functions
por: Giesl, Peter
Publicado: (2007) -
Averaging Methods in Nonlinear Dynamical Systems
por: Sanders, Jan A., et al.
Publicado: (2007) -
Dynamics of Quasi-Stable Dissipative Systems
por: Chueshov, Igor
Publicado: (2015)