Cargando…

Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics.  Complex systems are systems that comprise many interacting parts with the ability...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Meyers, Robert A. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-1806-1
003 DE-He213
005 20220117183539.0
007 cr nn 008mamaa
008 111020s2011 xxu| s |||| 0|eng d
020 |a 9781461418061  |9 978-1-4614-1806-1 
024 7 |a 10.1007/978-1-4614-1806-1  |2 doi 
050 4 |a Q295 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 530.1  |2 23 
245 1 0 |a Mathematics of Complexity and Dynamical Systems  |h [electronic resource] /  |c edited by Robert A. Meyers. 
250 |a 1st ed. 2011. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2011. 
300 |a 489 illus., 140 illus. in color. eReference.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Ergodic Theory -- Three Editor-in-Chief Selections: Catastrophe Theory; Infinite Dimensional Controllability; Philosophy of Science, Mathematical Models In.- Fractals and Multifractals -- Non-linear Ordinary Differential Equations and Dynamical Systems -- Non-Linear Partial Differential Equations -- Perturbation Theory -- Solitons -- Systems and Control Theory. 
520 |a Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics.  Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures.  These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifracticals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics.  Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers. 
650 0 |a System theory. 
650 0 |a Computer simulation. 
650 0 |a Dynamical systems. 
650 0 |a Control theory. 
650 0 |a Differential equations. 
650 1 4 |a Complex Systems. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Dynamical Systems. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Differential Equations. 
700 1 |a Meyers, Robert A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eReference 
776 0 8 |i Printed edition:  |z 9781461418078 
776 0 8 |i Printed edition:  |z 9781461418054 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-1806-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXRC 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Reference Module Computer Science and Engineering (SpringerNature-43748)