|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-1-4614-1791-0 |
003 |
DE-He213 |
005 |
20220117115612.0 |
007 |
cr nn 008mamaa |
008 |
130502s2013 xxu| s |||| 0|eng d |
020 |
|
|
|a 9781461417910
|9 978-1-4614-1791-0
|
024 |
7 |
|
|a 10.1007/978-1-4614-1791-0
|2 doi
|
050 |
|
4 |
|a TK7867-7867.5
|
072 |
|
7 |
|a TJFC
|2 bicssc
|
072 |
|
7 |
|a TEC008010
|2 bisacsh
|
072 |
|
7 |
|a TJFC
|2 thema
|
082 |
0 |
4 |
|a 621.3815
|2 23
|
245 |
1 |
0 |
|a High-Performance Computing Using FPGAs
|h [electronic resource] /
|c edited by Wim Vanderbauwhede, Khaled Benkrid.
|
250 |
|
|
|a 1st ed. 2013.
|
264 |
|
1 |
|a New York, NY :
|b Springer New York :
|b Imprint: Springer,
|c 2013.
|
300 |
|
|
|a XI, 803 p. 232 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a High-Performance Hardware Acceleration of Asset Simulations -- Monte Carlo Simulation based Financial Computing on the Maxwell FPGA Parallel Machine -- Bioinformatics Applications on the FPGA-based High-Performance Computer RIVYERA -- FPGA-Accelerated Molecular Dynamics -- FPGA-based HPRC for Bioinformatics Applications -- High-Performance Computing for Neuroinformatics using FPGA -- High-Performance FPGA-Accelerated Real-time Search -- High-Performance Data Processing over N-ary Trees -- FPGA-based Systolic Computational-Memory Array for Scalable Stencil Computations -- High performance implementation of RTM seismic modeling on FPGAs: architecture, arithmetic and power issues -- High-Performance Cryptanalysis on RIVYERA and COPACOBANA Computing Systems -- FPGA-based HPRC Systems for Scientific Applications -- Accelerating the SPICE Circuit Simulator using an FPGA - A Case Study -- The Convey Hybrid-Core Architecture -- Low Cost High Performance Reconfigurable Computing -- An FPGA-based supercomputer for statistical physics: the weird case of Janus -- Accelerate Communication, not Computation! -- High-speed torus interconnect using FPGAs -- MEMSCALE: Re-architecting memory resources for clusters -- High-performance computing based on high-speed dynamic reconfiguration -- Reconfigurable arithmetic for HPC -- Acceleration of the Discrete Element Method: From RTL to C-Based Design -- Optimising Euroben Kernels on Maxwell -- Assessing Productivity of High-Level Design Methodologies for High-Performance Reconfigurable Computers -- Maximum performance computing with dataflow engines.
|
520 |
|
|
|a This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware-in the form Field Programmable Gate Arrays (FPGAs)-in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community. The book includes: Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation. Seven architecture chapters which present both commercial and academic parallel FPGA architectures, low latency and high performance FPGA-based networks and memory architectures for parallel machines, and a high speed optical dynamic reconfiguration mechanism for HPRC. Five tools and methodologies chapters which address the important issue of productivity and high performance in HPRC. These include a study of precision and arithmetic issues in HPRC, comparative studies of C-based high level synthesis tools and RTL-based approaches, taxonomy of HPRC tools and a framework of their analysis, and an integrated hardware-software-application approach to HPRC.
|
650 |
|
0 |
|a Electronic circuits.
|
650 |
|
0 |
|a Microprocessors.
|
650 |
|
0 |
|a Computer architecture.
|
650 |
|
0 |
|a Computer science-Mathematics.
|
650 |
1 |
4 |
|a Electronic Circuits and Systems.
|
650 |
2 |
4 |
|a Processor Architectures.
|
650 |
2 |
4 |
|a Mathematical Applications in Computer Science.
|
700 |
1 |
|
|a Vanderbauwhede, Wim.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Benkrid, Khaled.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9781461417927
|
776 |
0 |
8 |
|i Printed edition:
|z 9781461417903
|
776 |
0 |
8 |
|i Printed edition:
|z 9781493943104
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-1-4614-1791-0
|z Texto Completo
|
912 |
|
|
|a ZDB-2-ENG
|
912 |
|
|
|a ZDB-2-SXE
|
950 |
|
|
|a Engineering (SpringerNature-11647)
|
950 |
|
|
|a Engineering (R0) (SpringerNature-43712)
|