Cargando…

Advances in Non-Linear Modeling for Speech Processing

Advances in Non-Linear Modeling for Speech Processing includes advanced topics in non-linear estimation and modeling techniques along with their applications to speaker recognition. Non-linear aeroacoustic modeling approach is used to estimate the important fine-structure speech events, which are no...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Holambe, Raghunath S. (Autor), Deshpande, Mangesh S. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-1505-3
003 DE-He213
005 20220117121056.0
007 cr nn 008mamaa
008 120220s2012 xxu| s |||| 0|eng d
020 |a 9781461415053  |9 978-1-4614-1505-3 
024 7 |a 10.1007/978-1-4614-1505-3  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Holambe, Raghunath S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Advances in Non-Linear Modeling for Speech Processing  |h [electronic resource] /  |c by Raghunath S. Holambe, Mangesh S. Deshpande. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XIII, 102 p. 32 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-7388 
505 0 |a From the Contents: Speech production mechanism -- Linear speech production model -- Nonlinearity in speech production -- Nonlinear dynamic system model -- Speech perception mechanism -- Summary -- Autoregressive models -- Linear autoregressive model -- Nonlinear autoregressive model -- Nonlinear measurement and modeling using Teager energy operator -- Teager energy operator (TEO) -- Vocal tract aeroacoustic flow -- Energy measurement -- Energy separation -- Noise suppression using TEO. 
520 |a Advances in Non-Linear Modeling for Speech Processing includes advanced topics in non-linear estimation and modeling techniques along with their applications to speaker recognition. Non-linear aeroacoustic modeling approach is used to estimate the important fine-structure speech events, which are not revealed by the short time Fourier transform (STFT). This aeroacostic modeling approach provides the impetus for the high resolution Teager energy operator (TEO). This operator is characterized by a time resolution that can track rapid signal energy changes within a glottal cycle. The cepstral features like linear prediction cepstral coefficients (LPCC) and mel frequency cepstral coefficients (MFCC) are computed from the magnitude spectrum of the speech frame and the phase spectra is neglected. To overcome the problem of neglecting the phase spectra, the speech production system can be represented as an amplitude modulation-frequency modulation (AM-FM) model. To demodulate the speech signal, to estimation the amplitude envelope and instantaneous frequency components, the energy separation algorithm (ESA) and the Hilbert transform demodulation (HTD) algorithm are discussed. Different features derived using above non-linear modeling techniques are used to develop a speaker identification system. Finally, it is shown that, the fusion of speech production and speech perception mechanisms can lead to a robust feature set. 
650 0 |a Signal processing. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Artificial intelligence. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Natural Language Processing (NLP). 
650 2 4 |a Artificial Intelligence. 
700 1 |a Deshpande, Mangesh S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461415060 
776 0 8 |i Printed edition:  |z 9781461415046 
830 0 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-7388 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-1505-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)