Cargando…

Predicting Prosody from Text for Text-to-Speech Synthesis

Predicting Prosody from Text for Text-to-Speech Synthesis covers the specific aspects of prosody, mainly focusing on how to predict the prosodic information from linguistic text, and then how to exploit the predicted prosodic knowledge for various speech applications. Author K. Sreenivasa Rao discus...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rao, K. Sreenivasa (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-1338-7
003 DE-He213
005 20220114114252.0
007 cr nn 008mamaa
008 120426s2012 xxu| s |||| 0|eng d
020 |a 9781461413387  |9 978-1-4614-1338-7 
024 7 |a 10.1007/978-1-4614-1338-7  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Rao, K. Sreenivasa.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Predicting Prosody from Text for Text-to-Speech Synthesis  |h [electronic resource] /  |c by K. Sreenivasa Rao. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 130 p. 42 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-7388 
505 0 |a 1. Introduction -- 2. Prosody Knowledge for Speech Systems: A Review -- 3. Analysis of Durationsn of Sound Units -- 4. Modeling Duration -- 5. Modeling Intonation -- 6. Prosody Modification -- 7. Practical Aspects of Prosody Modification -- 8. Summary and Conclusions -- Appendix A. Coding Scheme Used to Represent Linguistic and Production Constraints. 
520 |a Predicting Prosody from Text for Text-to-Speech Synthesis covers the specific aspects of prosody, mainly focusing on how to predict the prosodic information from linguistic text, and then how to exploit the predicted prosodic knowledge for various speech applications. Author K. Sreenivasa Rao discusses proposed methods along with state-of-the-art techniques for the acquisition and incorporation of prosodic knowledge for developing speech systems. Positional, contextual and phonological features are proposed for representing the linguistic and production constraints of the sound units present in the text. This book is intended for graduate students and researchers working in the area of speech processing. 
650 0 |a Signal processing. 
650 0 |a Computational linguistics. 
650 0 |a Natural language processing (Computer science). 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Computational Linguistics. 
650 2 4 |a Natural Language Processing (NLP). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461413394 
776 0 8 |i Printed edition:  |z 9781461413370 
830 0 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-7388 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-1338-7  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)