Cargando…

Dialect Accent Features for Establishing Speaker Identity A Case Study /

Dialect Accent Features for Establishing Speaker Identity: A Case Study discusses the subject of forensic voice identification and speaker profiling. Specifically focusing on speaker profiling and using dialects of the Hindi language, widely used in India, the authors have contributed to the body of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kulshreshtha, Manisha (Autor), Mathur, Ramkumar (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-1138-3
003 DE-He213
005 20220115201659.0
007 cr nn 008mamaa
008 120323s2012 xxu| s |||| 0|eng d
020 |a 9781461411383  |9 978-1-4614-1138-3 
024 7 |a 10.1007/978-1-4614-1138-3  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Kulshreshtha, Manisha.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dialect Accent Features for Establishing Speaker Identity  |h [electronic resource] :  |b A Case Study /  |c by Manisha Kulshreshtha, Ramkumar Mathur. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 60 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-7388 
505 0 |a 1. Introduction -- 2. Hindi Language and Its Dialects -- 3. Speech Materials and Instrumentation -- 4. Analysis and Results -- 5. Conclusion. 
520 |a Dialect Accent Features for Establishing Speaker Identity: A Case Study discusses the subject of forensic voice identification and speaker profiling. Specifically focusing on speaker profiling and using dialects of the Hindi language, widely used in India, the authors have contributed to the body of research on speaker identification by using accent feature as the discriminating factor. This case study contributes to the understanding of the speaker identification process in a situation where unknown speech samples are in different language/dialect than the recording of a suspect. The authors' data establishes that vowel quality, quantity, intonation and tone of a speaker as compared to Khariboli (standard Hindi) could be the potential features for identification of dialect accent. 
650 0 |a Signal processing. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Pattern recognition systems. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Natural Language Processing (NLP). 
650 2 4 |a Automated Pattern Recognition. 
700 1 |a Mathur, Ramkumar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781489999399 
776 0 8 |i Printed edition:  |z 9781461411390 
776 0 8 |i Printed edition:  |z 9781461411376 
830 0 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-7388 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-1138-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)