Cargando…

The Relevance of the Time Domain to Neural Network Models

A significant amount of effort in neural modeling is directed towards understanding the representation of external objects in the brain. There is also a rapidly growing interest in modeling the intrinsically-generated activity in the brain, as represented by the default mode network hypothesis, and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Rao, A. Ravishankar (Editor ), Cecchi, Guillermo A. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Springer Series in Cognitive and Neural Systems, 3
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-0724-9
003 DE-He213
005 20220114185524.0
007 cr nn 008mamaa
008 110914s2012 xxu| s |||| 0|eng d
020 |a 9781461407249  |9 978-1-4614-0724-9 
024 7 |a 10.1007/978-1-4614-0724-9  |2 doi 
050 4 |a RC321-580 
072 7 |a PSAN  |2 bicssc 
072 7 |a MED057000  |2 bisacsh 
072 7 |a PSAN  |2 thema 
082 0 4 |a 612.8  |2 23 
245 1 4 |a The Relevance of the Time Domain to Neural Network Models  |h [electronic resource] /  |c edited by A. Ravishankar Rao, Guillermo A. Cecchi. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XVIII, 226 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Cognitive and Neural Systems,  |x 2363-9113 ;  |v 3 
520 |a A significant amount of effort in neural modeling is directed towards understanding the representation of external objects in the brain. There is also a rapidly growing interest in modeling the intrinsically-generated activity in the brain, as represented by the default mode network hypothesis, and the emergent behavior that gives rise to critical phenomena such as neural avalanches. Time plays a critical role in these intended modeling domains, from the exquisite discriminations in the mammalian auditory system to the precise timing involved in high-end activities such as competitive sports or professional music performance. The growth in experimental high-throughput neuroscience techniques has allowed the multi-scale acquisition of neural signals, from individual electrode recordings to whole-brain functional magnetic resonance imaging activity, including the ability to manipulate neural signals with optogenetic approaches. This has created a deluge of experimental data, spanning multiple spatial and temporal scales, and posing the enormous challenge of its interpretation in terms of a predictive theory of brain function. In addition, there has been a massive growth in availability of computational power through parallel computing. The Relevance of the Time Domain to Neural Network Models aims to develop a unified view of how the time domain can be effectively employed in neural network models. The book proposes that conceptual models of neural interaction are required in order to understand the data being collected. Simultaneously, these proposed models can be used to form hypotheses of neural interaction and system behavior that can be neuroscientifically tested. The book concentrates on a crucial aspect of brain modeling: the nature and functional relevance of temporal interactions in neural systems. This book will appeal to a wide audience consisting of computer scientists and electrical engineers interested in brain-like computational mechanisms, computer architects exploring the development of high-performance computing systems to support these computations, neuroscientists probing the neural code and signaling mechanisms, mathematicians and physicists interested in modeling complex biological phenomena, and graduate students in all these disciplines who are searching for challenging research questions. 
650 0 |a Neurosciences. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 1 4 |a Neuroscience. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Rao, A. Ravishankar.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Cecchi, Guillermo A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461429920 
776 0 8 |i Printed edition:  |z 9781461407232 
776 0 8 |i Printed edition:  |z 9781461407256 
830 0 |a Springer Series in Cognitive and Neural Systems,  |x 2363-9113 ;  |v 3 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-0724-9  |z Texto Completo 
912 |a ZDB-2-SBL 
912 |a ZDB-2-SXB 
950 |a Biomedical and Life Sciences (SpringerNature-11642) 
950 |a Biomedical and Life Sciences (R0) (SpringerNature-43708)