Cargando…

Bifurcation Theory An Introduction with Applications to Partial Differential Equations /

In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kielhöfer, Hansjörg (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2012.
Edición:2nd ed. 2012.
Colección:Applied Mathematical Sciences, 156
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-0502-3
003 DE-He213
005 20220113021307.0
007 cr nn 008mamaa
008 111111s2012 xxu| s |||| 0|eng d
020 |a 9781461405023  |9 978-1-4614-0502-3 
024 7 |a 10.1007/978-1-4614-0502-3  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Kielhöfer, Hansjörg.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bifurcation Theory  |h [electronic resource] :  |b An Introduction with Applications to Partial Differential Equations /  |c by Hansjörg Kielhöfer. 
250 |a 2nd ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a VIII, 400 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 2196-968X ;  |v 156 
505 0 |a Introduction -- Global Theory -- Applications. 
520 |a In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations.   The second edition is substantially and formally revised and new material is added. Among this is bifurcation with a two-dimensional kernel with applications, the buckling of the Euler rod, the appearance of Taylor vortices, the singular limit process of the Cahn-Hilliard model, and an application of this method to more complicated nonconvex variational problems. 
650 0 |a Differential equations. 
650 0 |a Dynamical systems. 
650 0 |a Mathematics. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Differential Equations. 
650 2 4 |a Dynamical Systems. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Engineering Mechanics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461405016 
776 0 8 |i Printed edition:  |z 9781493901401 
776 0 8 |i Printed edition:  |z 9781461405030 
830 0 |a Applied Mathematical Sciences,  |x 2196-968X ;  |v 156 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-0502-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)