Cargando…

Nonlinear Filtering and Optimal Phase Tracking

  This book offers an analytical rather than measure-theoretical approach to the derivation of the partial differential equations of nonlinear filtering theory. The basis for this approach is the discrete numerical scheme used in Monte-Carlo simulations of stochastic differential equations and Wiene...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schuss, Zeev (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Applied Mathematical Sciences, 180
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-0487-3
003 DE-He213
005 20220116220639.0
007 cr nn 008mamaa
008 111114s2012 xxu| s |||| 0|eng d
020 |a 9781461404873  |9 978-1-4614-0487-3 
024 7 |a 10.1007/978-1-4614-0487-3  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Schuss, Zeev.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Nonlinear Filtering and Optimal Phase Tracking  |h [electronic resource] /  |c by Zeev Schuss. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2012. 
300 |a XVIII, 262 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 2196-968X ;  |v 180 
505 0 |a Diffusion and Stochastic Differential Equations -- Euler's Simulation Scheme and Wiener's Measure -- Nonlinear Filtering and Smoothing of Diffusions -- Small Noise Analysis of Zakai's Equation -- Loss of Lock in Phase Trackers -- Loss of Lock in RADAR and Synchronization -- Phase Tracking with Optimal Lock Time -- Bibliography -- Index. 
520 |a   This book offers an analytical rather than measure-theoretical approach to the derivation of the partial differential equations of nonlinear filtering theory. The basis for this approach is the discrete numerical scheme used in Monte-Carlo simulations of stochastic differential equations and Wiener's associated path integral representation of the transition probability density. Furthermore, it presents analytical methods for constructing asymptotic approximations to their solution and for synthesizing asymptotically optimal filters. It also offers a new approach to the phase tracking problem, based on optimizing the mean time to loss of lock. The book is based on lecture notes from a one-semester special topics course on stochastic processes and their applications that the author taught many times to graduate students of mathematics, applied mathematics, physics, chemistry, computer science, electrical engineering, and other disciplines. The book contains exercises and worked-out examples aimed at illustrating the methods of mathematical modeling and performance analysis of phase trackers. 
650 0 |a Probabilities. 
650 0 |a Mathematical physics. 
650 0 |a Differential equations. 
650 1 4 |a Probability Theory. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781489973818 
776 0 8 |i Printed edition:  |z 9781461404880 
776 0 8 |i Printed edition:  |z 9781461404866 
830 0 |a Applied Mathematical Sciences,  |x 2196-968X ;  |v 180 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-0487-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)