Cargando…

Semi-Discretization for Time-Delay Systems Stability and Engineering Applications /

The book presents the recently introduced and already widely cited semi-discretization method for the stability analysis of delayed dynamical systems with parametric excitation. Delay-differential equations often come up in different fields of engineering, such as feedback control systems, machine t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Insperger, Tamás (Autor), Stépán, Gábor (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Applied Mathematical Sciences, 178
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-0335-7
003 DE-He213
005 20220222071436.0
007 cr nn 008mamaa
008 110711s2011 xxu| s |||| 0|eng d
020 |a 9781461403357  |9 978-1-4614-0335-7 
024 7 |a 10.1007/978-1-4614-0335-7  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Insperger, Tamás.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Semi-Discretization for Time-Delay Systems  |h [electronic resource] :  |b Stability and Engineering Applications /  |c by Tamás Insperger, Gábor Stépán. 
250 |a 1st ed. 2011. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2011. 
300 |a X, 174 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 2196-968X ;  |v 178 
505 0 |a Introducing delay -- Basic delay differential equations -- Newtonian examples -- Engineering applications -- Summary -- References. 
520 |a The book presents the recently introduced and already widely cited semi-discretization method for the stability analysis of delayed dynamical systems with parametric excitation. Delay-differential equations often come up in different fields of engineering, such as feedback control systems, machine tool vibrations, and balancing/stabilization with reflex delay. The behavior of such systems is often counter-intuitive and closed form analytical formulas can rarely be given even for the linear stability conditions. The same holds for parametrically excited systems. If parametric excitation is coupled with the delay effect, then the governing equation is a delay-differential equation with time-periodic coefficients, and the stability properties are even more intriguing. The semi-discretization method is a simple but efficient method that is based on the discretization with respect to the delayed term and the periodic coefficients only. This discretization results in a system of ordinary differential equations that can be solved using standard techniques, which are part of basic engineering curriculums. The method can effectively be used to construct stability charts in the space of system parameters. These charts provide a useful tool for engineers, since they present an overview on the effects of system parameters on the local dynamics of the system. The book presents the application of the method to different engineering problems, such as dynamics of turning and milling processes with constant and with varying spindle speeds, stick balancing with reflex delay, force control processes in the presence of feedback delay, and stabilization using time-periodic control gains. The book is designed for graduate and PhD students as well as researchers working in the field of delayed dynamical systems with application to mechanical, electrical and chemical engineering, control theory, biomechanics, population dynamics, neuro-physiology, and climate research. 
650 0 |a Dynamical systems. 
650 0 |a Control engineering. 
650 0 |a Mechanical engineering. 
650 0 |a Mathematics. 
650 1 4 |a Dynamical Systems. 
650 2 4 |a Control and Systems Theory. 
650 2 4 |a Mechanical Engineering. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Stépán, Gábor.  |e author.  |0 (orcid)0000-0003-0309-2409  |1 https://orcid.org/0000-0003-0309-2409  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461430131 
776 0 8 |i Printed edition:  |z 9781461403340 
776 0 8 |i Printed edition:  |z 9781461403364 
830 0 |a Applied Mathematical Sciences,  |x 2196-968X ;  |v 178 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-0335-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)