Synthetic Datasets for Statistical Disclosure Control Theory and Implementation /
The aim of this book is to give the reader a detailed introduction to the different approaches to generating multiply imputed synthetic datasets. It describes all approaches that have been developed so far, provides a brief history of synthetic datasets, and gives useful hints on how to deal with re...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York : Imprint: Springer,
2011.
|
Edición: | 1st ed. 2011. |
Colección: | Lecture Notes in Statistics,
201 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Introduction
- Background on Multiply Imputed Synthetic Datasets
- Background on Multiple Imputation
- The IAB Establishment Panel
- Multiple Imputation for Nonresponse
- Fully Synthetic Datasets
- Partially Synthetic Datasets
- Multiple Imputation for Nonresponse and Statistical Disclosure Control
- A Two-Stage Imputation Procedure to Balance the Risk-Utility Trade-Off
- Chances and Obstacles for Multiply Imputed Synthetic Datasets.