Cargando…

Ergodic Theory and Dynamical Systems

This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Coudène, Yves (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-7287-1
003 DE-He213
005 20220118152250.0
007 cr nn 008mamaa
008 161111s2016 xxk| s |||| 0|eng d
020 |a 9781447172871  |9 978-1-4471-7287-1 
024 7 |a 10.1007/978-1-4471-7287-1  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Coudène, Yves.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Ergodic Theory and Dynamical Systems  |h [electronic resource] /  |c by Yves Coudène. 
250 |a 1st ed. 2016. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 190 p. 49 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Introduction -- Part I Ergodic Theory -- The Mean Ergodic Theorem -- The Pointwise Ergodic Theorem -- Mixing -- The Hopf Argument -- Part II Dynamical Systems -- Topological Dynamics -- Nonwandering -- Conjugation -- Linearization -- A Strange Attractor -- Part III Entropy Theory -- Entropy -- Entropy and Information Theory -- Computing Entropy -- Part IV Ergodic Decomposition -- Lebesgue Spaces and Isomorphisms -- Ergodic Decomposition -- Measurable Partitions and -Algebras -- Part V Appendices -- Weak Convergence -- Conditional Expectation -- Topology and Measures -- References. 
520 |a This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of comments for the more advanced reader. 
650 0 |a Dynamical systems. 
650 1 4 |a Dynamical Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447172857 
776 0 8 |i Printed edition:  |z 9781447172864 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-7287-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)