Lectures on Functional Analysis and the Lebesgue Integral
This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and th...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Springer London : Imprint: Springer,
2016.
|
Edición: | 1st ed. 2016. |
Colección: | Universitext,
|
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Some papers of general interest
- Topological prerequisites
- Part 1 Functional analysis
- Hilbert spaces
- Banach spaces
- Locally convex spaces
- Part 2 The Lebesgue integral
- Monotone functions.- The Lebesgue integral in R
- Generalized Newton-Leibniz formula
- Integrals on measure spaces
- Part 3 Function spaces.- Spaces of continuous functions
- Spaces of integrable functions
- Almost everywhere convergence
- Hints and solutions to some exercises.- Bibliography
- Teaching remarks
- Subject index
- Name index.