Cargando…

Lectures on Functional Analysis and the Lebesgue Integral

This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Komornik, Vilmos (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-6811-9
003 DE-He213
005 20220114173658.0
007 cr nn 008mamaa
008 160603s2016 xxk| s |||| 0|eng d
020 |a 9781447168119  |9 978-1-4471-6811-9 
024 7 |a 10.1007/978-1-4471-6811-9  |2 doi 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.7  |2 23 
100 1 |a Komornik, Vilmos.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lectures on Functional Analysis and the Lebesgue Integral  |h [electronic resource] /  |c by Vilmos Komornik. 
250 |a 1st ed. 2016. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2016. 
300 |a XX, 403 p. 46 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Some papers of general interest -- Topological prerequisites -- Part 1 Functional analysis -- Hilbert spaces -- Banach spaces -- Locally convex spaces -- Part 2 The Lebesgue integral -- Monotone functions.- The Lebesgue integral in R -- Generalized Newton-Leibniz formula -- Integrals on measure spaces -- Part 3 Function spaces.- Spaces of continuous functions -- Spaces of integrable functions -- Almost everywhere convergence -- Hints and solutions to some exercises.- Bibliography -- Teaching remarks -- Subject index -- Name index. 
520 |a This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and theorems. Most results are illustrated by the small ℓp spaces. The Lebesgue integral, meanwhile, is treated via the direct approach of Frigyes Riesz, whose constructive definition of measurable functions leads to optimal, clear-cut versions of the classical theorems of Fubini-Tonelli and Radon-Nikodým. Lectures on Functional Analysis and the Lebesgue Integral presents the most important topics for students, with short, elegant proofs. The exposition style follows the Hungarian mathematical tradition of Paul Erdős and others. The order of the first two parts, functional analysis and the Lebesgue integral, may be reversed. In the third and final part they are combined to study various spaces of continuous and integrable functions. Several beautiful, but almost forgotten, classical theorems are also included. Both undergraduate and graduate students in pure and applied mathematics, physics and engineering will find this textbook useful. Only basic topological notions and results are used and various simple but pertinent examples and exercises illustrate the usefulness and optimality of most theorems. Many of these examples are new or difficult to localize in the literature, and the original sources of most notions and results are indicated to help the reader understand the genesis and development of the field. 
650 0 |a Functional analysis. 
650 0 |a Measure theory. 
650 0 |a Approximation theory. 
650 1 4 |a Functional Analysis. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Approximations and Expansions. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447168102 
776 0 8 |i Printed edition:  |z 9781447168126 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-6811-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)