Cargando…

Fundamentals of Predictive Text Mining

This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides he...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Weiss, Sholom M. (Autor), Indurkhya, Nitin (Autor), Zhang, Tong (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2015.
Edición:2nd ed. 2015.
Colección:Texts in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-6750-1
003 DE-He213
005 20230810155913.0
007 cr nn 008mamaa
008 150907s2015 xxk| s |||| 0|eng d
020 |a 9781447167501  |9 978-1-4471-6750-1 
024 7 |a 10.1007/978-1-4471-6750-1  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Weiss, Sholom M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fundamentals of Predictive Text Mining  |h [electronic resource] /  |c by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang. 
250 |a 2nd ed. 2015. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 239 p. 115 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts in Computer Science,  |x 1868-095X 
505 0 |a Overview of Text Mining -- From Textual Information to Numerical Vectors -- Using Text for Prediction -- Information Retrieval and Text Mining -- Finding Structure in a Document Collection -- Looking for Information in Documents -- Data Sources for Prediction: Databases, Hybrid Data and the Web -- Case Studies -- Emerging Directions. 
520 |a This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, and errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Topics and features: Presents a comprehensive, practical and easy-to-read introduction to text mining Includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter Explores the application and utility of each method, as well as the optimum techniques for specific scenarios Provides several descriptive case studies that take readers from problem description to systems deployment in the real world Describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English) Contains links to free downloadable industrial-quality text-mining software and other supplementary instruction material Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students. 
650 0 |a Data mining. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Information technology  |x Management. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Database management. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Natural Language Processing (NLP). 
650 2 4 |a Computer Application in Administrative Data Processing. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Database Management. 
700 1 |a Indurkhya, Nitin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhang, Tong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447167495 
776 0 8 |i Printed edition:  |z 9781447167518 
776 0 8 |i Printed edition:  |z 9781447171133 
830 0 |a Texts in Computer Science,  |x 1868-095X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-6750-1  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)