Probabilistic Graphical Models Principles and Applications /
This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applicat...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Sucar, Luis Enrique (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Springer London : Imprint: Springer,
2015.
|
Edición: | 1st ed. 2015. |
Colección: | Advances in Computer Vision and Pattern Recognition,
|
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Information Theory in Computer Vision and Pattern Recognition
por: Escolano Ruiz, Francisco, et al.
Publicado: (2009) -
Core Concepts in Data Analysis: Summarization, Correlation and Visualization
por: Mirkin, Boris
Publicado: (2011) -
Subspace, Latent Structure and Feature Selection Statistical and Optimization Perspectives Workshop, SLSFS 2005 Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers /
Publicado: (2006) -
Algorithmic Advances in Riemannian Geometry and Applications For Machine Learning, Computer Vision, Statistics, and Optimization /
Publicado: (2016) -
Hebbian Learning and Negative Feedback Networks
por: Fyfe, Colin
Publicado: (2005)