Cargando…

Comparative Gene Finding Models, Algorithms and Implementation /

This unique text/reference presents a concise guide to building computational gene finders, and describes the state of the art in computational gene finding methods, with a particular focus on comparative approaches. Fully updated and expanded, this new edition examines next-generation sequencing (N...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Axelson-Fisk, Marina (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2015.
Edición:2nd ed. 2015.
Colección:Computational Biology, 20
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-6693-1
003 DE-He213
005 20220118015457.0
007 cr nn 008mamaa
008 150413s2015 xxk| s |||| 0|eng d
020 |a 9781447166931  |9 978-1-4471-6693-1 
024 7 |a 10.1007/978-1-4471-6693-1  |2 doi 
050 4 |a QH324.2-324.25 
072 7 |a PS  |2 bicssc 
072 7 |a UY  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a PSAX  |2 thema 
082 0 4 |a 570.285  |2 23 
082 0 4 |a 570.113  |2 23 
100 1 |a Axelson-Fisk, Marina.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Comparative Gene Finding  |h [electronic resource] :  |b Models, Algorithms and Implementation /  |c by Marina Axelson-Fisk. 
250 |a 2nd ed. 2015. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2015. 
300 |a XX, 382 p. 81 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Biology,  |x 2662-2432 ;  |v 20 
505 0 |a Introduction -- Single Species Gene Finding -- Sequence Alignment -- Comparative Gene Finding -- Gene Structure Submodels -- Parameter Training -- Implementation of a Comparative Gene Finder -- Annotation Pipelines for Next Generation Sequencing Projects. 
520 |a This unique text/reference presents a concise guide to building computational gene finders, and describes the state of the art in computational gene finding methods, with a particular focus on comparative approaches. Fully updated and expanded, this new edition examines next-generation sequencing (NGS) technology, including annotation pipelines for NGS data. The book also discusses conditional random fields, enhancing the broad coverage of topics spanning probability theory, statistics, information theory, optimization theory, and numerical analysis. Topics and features: Introduces the fundamental terms and concepts in the field, and provides an historical overview of algorithm development Discusses algorithms for single-species gene finding, and approaches to pairwise and multiple sequence alignments, then describes how the strengths in both areas can be combined to improve the accuracy of gene finding Explores the gene features most commonly captured by a computational gene model, and explains the basics of parameter training Illustrates how to implement a comparative gene finder, reviewing the different steps and accuracy assessment measures used to debug and benchmark the software Examines NGS techniques, and how to build a genome annotation pipeline, discussing sequence assembly, de novo repeat masking, and gene prediction (NEW) Postgraduate students, and researchers wishing to enter the field quickly, will find this accessible text a valuable source of insights and examples. A suggested course outline for instructors is provided in the preface. Dr. Marina Axelson-Fisk is an Associate Professor at the Department of Mathematical Sciences of Chalmers University of Technology, Gothenburg, Sweden. 
650 0 |a Bioinformatics. 
650 1 4 |a Computational and Systems Biology. 
650 2 4 |a Bioinformatics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447166948 
776 0 8 |i Printed edition:  |z 9781447166924 
776 0 8 |i Printed edition:  |z 9781447168751 
830 0 |a Computational Biology,  |x 2662-2432 ;  |v 20 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-6693-1  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)