Cargando…

Automatic Speech Recognition A Deep Learning Approach /

This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approa...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Yu, Dong (Autor), Deng, Li (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Signals and Communication Technology,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-5779-3
003 DE-He213
005 20220118205755.0
007 cr nn 008mamaa
008 141111s2015 xxk| s |||| 0|eng d
020 |a 9781447157793  |9 978-1-4471-5779-3 
024 7 |a 10.1007/978-1-4471-5779-3  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Yu, Dong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Automatic Speech Recognition  |h [electronic resource] :  |b A Deep Learning Approach /  |c by Dong Yu, Li Deng. 
250 |a 1st ed. 2015. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2015. 
300 |a XXVI, 321 p. 62 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Signals and Communication Technology,  |x 1860-4870 
505 0 |a Section 1: Automatic speech recognition: Background -- Feature extraction: basic frontend -- Acoustic model: Gaussian mixture hidden Markov model -- Language model: stochastic N-gram -- Historical reviews of speech recognition research: 1st, 2nd, 3rd, 3.5th, and 4th generations -- Section 2: Advanced feature extraction and transformation -- Unsupervised feature extraction -- Discriminative feature transformation -- Section 3: Advanced acoustic modeling -- Conditional random field (CRF) and hidden conditional random field (HCRF) -- Deep-Structured CRF -- Semi-Markov conditional random field -- Deep stacking models -- Deep neural network - hidden Markov hybrid model -- Section 4: Advanced language modeling -- Discriminative Language model -- Log-linear language model -- Neural network language model. 
520 |a This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models. 
650 0 |a Signal processing. 
650 0 |a Acoustical engineering. 
650 0 |a Social sciences-Data processing. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Engineering Acoustics. 
650 2 4 |a Computer Application in Social and Behavioral Sciences. 
700 1 |a Deng, Li.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447157809 
776 0 8 |i Printed edition:  |z 9781447157786 
776 0 8 |i Printed edition:  |z 9781447169673 
830 0 |a Signals and Communication Technology,  |x 1860-4870 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-5779-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)