Cargando…

Similarity-Based Pattern Analysis and Recognition

The pattern recognition and machine learning communities have, until recently, focused mainly on feature-vector representations, typically considering objects in isolation. However, this paradigm is being increasingly challenged by similarity-based approaches, which recognize the importance of relat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Pelillo, Marcello (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Advances in Computer Vision and Pattern Recognition,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-5628-4
003 DE-He213
005 20220113091128.0
007 cr nn 008mamaa
008 131126s2013 xxk| s |||| 0|eng d
020 |a 9781447156284  |9 978-1-4471-5628-4 
024 7 |a 10.1007/978-1-4471-5628-4  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
245 1 0 |a Similarity-Based Pattern Analysis and Recognition  |h [electronic resource] /  |c edited by Marcello Pelillo. 
250 |a 1st ed. 2013. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a XIV, 291 p. 65 illus., 46 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
505 0 |a Introduction -- Part I: Foundational Issues -- Non-Euclidean Dissimilarities -- SIMBAD -- Part II: Deriving Similarities for Non-vectorial Data -- On the Combination of Information Theoretic Kernels with Generative Embeddings -- Learning Similarities from Examples under the Evidence Accumulation Clustering Paradigm -- Part III: Embedding and Beyond -- Geometricity and Embedding -- Structure Preserving Embedding of Dissimilarity Data -- A Game-Theoretic Approach to Pairwise Clustering and Matching -- Part IV: Applications -- Automated Analysis of Tissue Micro-Array Images on the Example of Renal Cell Carcinoma -- Analysis of Brain Magnetic Resonance (MR) Scans for the Diagnosis of Mental Illness. 
520 |a The pattern recognition and machine learning communities have, until recently, focused mainly on feature-vector representations, typically considering objects in isolation. However, this paradigm is being increasingly challenged by similarity-based approaches, which recognize the importance of relational and similarity information. This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models. Topics and features: Explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification algorithms Reviews similarity measures for non-vectorial data, considering both a "kernel tailoring" approach and a strategy for learning similarities directly from training data Describes various methods for "structure-preserving" embeddings of structured data Formulates classical pattern recognition problems from a purely game-theoretic perspective Examines two large-scale biomedical imaging applications that provide assistance in the diagnosis of physical and mental illnesses from tissue microarray images and MRI images This pioneering work is essential reading for graduate students and researchers seeking an introduction to this important and diverse subject. Marcello Pelillo is a Full Professor of Computer Science at the University of Venice, Italy. He is a Fellow of the IEEE and of the IAPR. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Automated Pattern Recognition. 
700 1 |a Pelillo, Marcello.  |e editor.  |0 (orcid)0000-0001-8992-9243  |1 https://orcid.org/0000-0001-8992-9243  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447156291 
776 0 8 |i Printed edition:  |z 9781447156277 
776 0 8 |i Printed edition:  |z 9781447169505 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-5628-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)