Cargando…

Compression Schemes for Mining Large Datasets A Machine Learning Perspective /

As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ravindra Babu, T. (Autor), Narasimha Murty, M. (Autor), Subrahmanya, S.V (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Advances in Computer Vision and Pattern Recognition,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-5607-9
003 DE-He213
005 20220114232746.0
007 cr nn 008mamaa
008 131113s2013 xxk| s |||| 0|eng d
020 |a 9781447156079  |9 978-1-4471-5607-9 
024 7 |a 10.1007/978-1-4471-5607-9  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
100 1 |a Ravindra Babu, T.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Compression Schemes for Mining Large Datasets  |h [electronic resource] :  |b A Machine Learning Perspective /  |c by T. Ravindra Babu, M. Narasimha Murty, S.V. Subrahmanya. 
250 |a 1st ed. 2013. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 197 p. 62 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
505 0 |a Introduction -- Data Mining Paradigms -- Run-Length Encoded Compression Scheme -- Dimensionality Reduction by Subsequence Pruning -- Data Compaction through Simultaneous Selection of Prototypes and Features -- Domain Knowledge-Based Compaction -- Optimal Dimensionality Reduction -- Big Data Abstraction through Multiagent Systems -- Intrusion Detection Dataset: Binary Representation. 
520 |a As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times. This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while simultaneously providing the same or better classification accuracy, as illustrated using high-dimensional handwritten digit data and a large intrusion detection dataset. Topics and features:  Presents a concise introduction to data mining paradigms, data compression, and mining compressed data Describes a non-lossy compression scheme based on run-length encoding of patterns with binary valued features Proposes a lossy compression scheme that recognizes a pattern as a sequence of features and identifying subsequences Examines whether the identification of prototypes and features can be achieved simultaneously through lossy compression and efficient clustering Discusses ways to make use of domain knowledge in generating abstraction Reviews optimal prototype selection using genetic algorithms Suggests possible ways of dealing with big data problems using multiagent systems  A must-read for all researchers involved in data mining and big data, the book proposes each algorithm within a discussion of the wider context, implementation details and experimental results. These are further supported by bibliographic notes and a glossary. 
650 0 |a Pattern recognition systems. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 1 4 |a Automated Pattern Recognition. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Narasimha Murty, M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Subrahmanya, S.V.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447156086 
776 0 8 |i Printed edition:  |z 9781447156062 
776 0 8 |i Printed edition:  |z 9781447170556 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-5607-9  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)