Cargando…

Morse Theory and Floer Homology

This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian sy...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Audin, Michèle (Autor), Damian, Mihai (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-5496-9
003 DE-He213
005 20220126131743.0
007 cr nn 008mamaa
008 131128s2014 xxk| s |||| 0|eng d
020 |a 9781447154969  |9 978-1-4471-5496-9 
024 7 |a 10.1007/978-1-4471-5496-9  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Audin, Michèle.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Morse Theory and Floer Homology  |h [electronic resource] /  |c by Michèle Audin, Mihai Damian. 
250 |a 1st ed. 2014. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 596 p. 114 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Introduction to Part I -- Morse Functions -- Pseudo-Gradients -- The Morse Complex -- Morse Homology, Applications -- Introduction to Part II -- What You Need To Know About Symplectic Geometry -- The Arnold Conjecture and the Floer Equation -- The Maslov Index -- Linearization and Transversality -- Spaces of Trajectories -- From Floer To Morse -- Floer Homology: Invariance -- Elliptic Regularity -- Technical Lemmas -- Exercises for the Second Part -- Appendices: What You Need to Know to Read This Book. 
520 |a This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold. The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse complex and the Morse homology, and develops some of their applications. Morse homology also serves a simple model for Floer homology, which is covered in the second part. Floer homology is an infinite-dimensional analogue of Morse homology. Its involvement has been crucial in the recent achievements in symplectic geometry and in particular in the proof of the Arnold conjecture. The building blocks of Floer homology are more intricate and imply the use of more sophisticated analytical methods, all of which are explained in this second part. The three appendices present a few prerequisites in differential geometry, algebraic topology and analysis. The book originated in a graduate course given at Strasbourg University, and contains a large range of figures and exercises. Morse Theory and Floer Homology will be particularly helpful for graduate and postgraduate students. 
650 0 |a Geometry. 
650 0 |a Geometry, Differential. 
650 0 |a Algebraic topology. 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Geometry. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Manifolds and Cell Complexes. 
700 1 |a Damian, Mihai.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447154976 
776 0 8 |i Printed edition:  |z 9781447154952 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-5496-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)