Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods
Algorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data. This unique text/reference describes in...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Aldrich, Chris (Autor), Auret, Lidia (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Springer London : Imprint: Springer,
2013.
|
Edición: | 1st ed. 2013. |
Colección: | Advances in Computer Vision and Pattern Recognition,
|
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Supervised and Unsupervised Ensemble Methods and their Applications
Publicado: (2008) -
Applications of Supervised and Unsupervised Ensemble Methods
Publicado: (2009) -
Unsupervised Classification Similarity Measures, Classical and Metaheuristic Approaches, and Applications /
por: Bandyopadhyay, Sanghamitra, et al.
Publicado: (2013) -
Efficient Learning Machines Theories, Concepts, and Applications for Engineers and System Designers /
por: Awad, Mariette, et al.
Publicado: (2015) -
Advances in Machine Learning II Dedicated to the memory of Professor Ryszard S. Michalski /
Publicado: (2010)