Cargando…

Graph-Based Clustering and Data Visualization Algorithms

This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A gr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Vathy-Fogarassy, Ágnes (Autor), Abonyi, János (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-5158-6
003 DE-He213
005 20220116144721.0
007 cr nn 008mamaa
008 130525s2013 xxk| s |||| 0|eng d
020 |a 9781447151586  |9 978-1-4471-5158-6 
024 7 |a 10.1007/978-1-4471-5158-6  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Vathy-Fogarassy, Ágnes.  |e author.  |0 (orcid)0000-0002-5524-1675  |1 https://orcid.org/0000-0002-5524-1675  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Graph-Based Clustering and Data Visualization Algorithms  |h [electronic resource] /  |c by Ágnes Vathy-Fogarassy, János Abonyi. 
250 |a 1st ed. 2013. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a XIII, 110 p. 62 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Vector Quantisation and Topology-Based Graph Representation -- Graph-Based Clustering Algorithms -- Graph-Based Visualisation of High-Dimensional Data. 
520 |a This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website. 
650 0 |a Data mining. 
650 0 |a Information visualization. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Data and Information Visualization. 
700 1 |a Abonyi, János.  |e author.  |0 (orcid)0000-0001-8593-1493  |1 https://orcid.org/0000-0001-8593-1493  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447151593 
776 0 8 |i Printed edition:  |z 9781447151579 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-5158-6  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)