Cargando…

Algebraic Geometry and Commutative Algebra

Algebraic geometry is a fascinating branch of mathematics that combines methods from both algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck's schemes invented in the late 1950s allowed the application of a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bosch, Siegfried (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-4829-6
003 DE-He213
005 20220117142114.0
007 cr nn 008mamaa
008 121116s2013 xxk| s |||| 0|eng d
020 |a 9781447148296  |9 978-1-4471-4829-6 
024 7 |a 10.1007/978-1-4471-4829-6  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Bosch, Siegfried.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algebraic Geometry and Commutative Algebra  |h [electronic resource] /  |c by Siegfried Bosch. 
250 |a 1st ed. 2013. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a X, 504 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Rings and Modules -- The Theory of Noetherian Rings -- Integral Extensions -- Extension of Coefficients and Descent -- Homological Methods: Ext and Tor -- Affine Schemes and Basic Constructions -- Techniques of Global Schemes -- Etale and Smooth Morphisms -- Projective Schemes and Proper Morphisms. 
520 |a Algebraic geometry is a fascinating branch of mathematics that combines methods from both algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck's schemes invented in the late 1950s allowed the application of algebraic-geometric methods in fields that formerly seemed to be far away from geometry (algebraic number theory, for example). The new techniques paved the way to spectacular progress such as the proof of Fermat's Last Theorem by Wiles and Taylor. The scheme-theoretic approach to algebraic geometry is explained for non-experts whilst more advanced readers can use the book to broaden their view on the subject. A separate part studies the necessary prerequisites from commutative algebra. The book provides an accessible and self-contained introduction to algebraic geometry, up to an advanced level. Every chapter of the book is preceded by a motivating introduction with an informal discussion of the contents. Typical examples and an abundance of exercises illustrate each section. Therefore the book is an excellent solution for learning by yourself or for complementing knowledge that is already present. It can equally be used as a convenient source for courses and seminars or as supplemental literature. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Commutative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447148302 
776 0 8 |i Printed edition:  |z 9781447148289 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-4829-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)