Cargando…

Computational Cancer Biology An Interaction Network Approach /

This brief introduces readers to various problems in cancer biology that are amenable to analysis using methods of probability theory and statistics, building on only a basic background in these two topics.   Aside from providing a self-contained introduction to several aspects of basic biology and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vidyasagar, Mathukumalli (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Control, Automation and Robotics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-4751-0
003 DE-He213
005 20220117023444.0
007 cr nn 008mamaa
008 121205s2012 xxk| s |||| 0|eng d
020 |a 9781447147510  |9 978-1-4471-4751-0 
024 7 |a 10.1007/978-1-4471-4751-0  |2 doi 
050 4 |a QH324.2-324.25 
072 7 |a PS  |2 bicssc 
072 7 |a UY  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a PSAX  |2 thema 
082 0 4 |a 570.285  |2 23 
082 0 4 |a 570.113  |2 23 
100 1 |a Vidyasagar, Mathukumalli.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Computational Cancer Biology  |h [electronic resource] :  |b An Interaction Network Approach /  |c by Mathukumalli Vidyasagar. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 80 p. 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Control, Automation and Robotics,  |x 2192-6794 
505 0 |a Introduction -- Inferring Genetic Regulatory Networks -- Context-specific Genomic Networks -- Analyzing Statistical Significance -- Separating Drivers from Passengers -- Some Research Directions. 
520 |a This brief introduces readers to various problems in cancer biology that are amenable to analysis using methods of probability theory and statistics, building on only a basic background in these two topics.   Aside from providing a self-contained introduction to several aspects of basic biology and to cancer, as well as to the techniques from statistics most commonly used in cancer biology, the brief describes several methods for inferring gene interaction networks from expression data, including one that is reported for the first time in the brief.  The application of these methods is illustrated on actual data from cancer cell lines.  Some promising directions for new research are also discussed.   After reading the brief, engineers and mathematicians should be able to collaborate fruitfully with their biologist colleagues on a wide variety of problems. 
650 0 |a Bioinformatics. 
650 0 |a Biomathematics. 
650 0 |a Control engineering. 
650 0 |a Biometry. 
650 0 |a Cancer. 
650 1 4 |a Computational and Systems Biology. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Control and Systems Theory. 
650 2 4 |a Biostatistics. 
650 2 4 |a Cancer Biology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447147527 
776 0 8 |i Printed edition:  |z 9781447147503 
830 0 |a SpringerBriefs in Control, Automation and Robotics,  |x 2192-6794 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-4751-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)