Cargando…

Motion History Images for Action Recognition and Understanding

Human action analysis and recognition is a relatively mature field, yet one which is often not well understood by students and researchers.  The large number of possible variations in human motion and appearance, camera viewpoint, and environment, present considerable challenges.  Some important and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ahad, Md. Atiqur Rahman (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-4730-5
003 DE-He213
005 20220112123231.0
007 cr nn 008mamaa
008 121227s2013 xxk| s |||| 0|eng d
020 |a 9781447147305  |9 978-1-4471-4730-5 
024 7 |a 10.1007/978-1-4471-4730-5  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
100 1 |a Ahad, Md. Atiqur Rahman.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Motion History Images for Action Recognition and Understanding  |h [electronic resource] /  |c by Md. Atiqur Rahman Ahad. 
250 |a 1st ed. 2013. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 116 p. 34 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Introduction -- Action Representation -- Motion History Image -- Action Datasets and MHI. 
520 |a Human action analysis and recognition is a relatively mature field, yet one which is often not well understood by students and researchers.  The large number of possible variations in human motion and appearance, camera viewpoint, and environment, present considerable challenges.  Some important and common problems remain unsolved by the computer vision community. However, many valuable approaches have been proposed over the past decade, including the motion history image (MHI) method. This method has received significant attention, as it offers greater robustness and performance than other techniques. This work presents a comprehensive review of these state-of-the-art approaches and their applications, with a particular focus on the MHI method and its variants. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Automated Pattern Recognition. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447147312 
776 0 8 |i Printed edition:  |z 9781447147299 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-4730-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)