Cargando…

Imaging Spectroscopy for Scene Analysis

In contrast with trichromatic image sensors, imaging spectroscopy can capture the properties of the materials in a scene. This implies that scene analysis using imaging spectroscopy has the capacity to robustly encode material signatures, infer object composition and recover photometric parameters....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Robles-Kelly, Antonio (Autor), Huynh, Cong Phuoc (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Advances in Computer Vision and Pattern Recognition,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4471-4652-0
003 DE-He213
005 20220117175458.0
007 cr nn 008mamaa
008 121031s2013 xxk| s |||| 0|eng d
020 |a 9781447146520  |9 978-1-4471-4652-0 
024 7 |a 10.1007/978-1-4471-4652-0  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
100 1 |a Robles-Kelly, Antonio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Imaging Spectroscopy for Scene Analysis  |h [electronic resource] /  |c by Antonio Robles-Kelly, Cong Phuoc Huynh. 
250 |a 1st ed. 2013. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a XVIII, 270 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
505 0 |a Introduction -- Spectral Image Acquisition -- Spectral Image Formation Process -- Reflectance Modelling -- Illuminant Power Spectrum -- Photometric Invariance -- Spectrum Representation -- Material Discovery -- Reflection Geometry -- Polarisation of Light -- Shape and Refractive Index from Polarisation. 
520 |a In contrast with trichromatic image sensors, imaging spectroscopy can capture the properties of the materials in a scene. This implies that scene analysis using imaging spectroscopy has the capacity to robustly encode material signatures, infer object composition and recover photometric parameters. This landmark text/reference presents a detailed analysis of spectral imaging, describing how it can be used in elegant and efficient ways for the purposes of material identification, object recognition and scene understanding. The opportunities and challenges of combining spatial and spectral information are explored in depth, as are a wide range of applications from surveillance and computational photography, to biosecurity and resource exploration. Topics and features: Discusses spectral image acquisition by hyperspectral cameras, and the process of spectral image formation Examines models of surface reflectance, the recovery of photometric invariants, and the estimation of the illuminant power spectrum from spectral imagery Describes spectrum representations for the interpolation of reflectance and radiance values, and the classification of spectra Reviews the use of imaging spectroscopy for material identification Explores the recovery of reflection geometry from image reflectance Investigates spectro-polarimetric imagery, and the recovery of object shape and material properties using polarimetric images captured from a single view An essential resource for researchers and graduate students of computer vision and pattern recognition, this comprehensive introduction to imaging spectroscopy for scene analysis will also be of great use to practitioners interested in shape analysis employing polarimetric imaging, and material recognition and classification using hyperspectral or multispectral data. 
650 0 |a Pattern recognition systems. 
650 0 |a Computer vision. 
650 1 4 |a Automated Pattern Recognition. 
650 2 4 |a Computer Vision. 
700 1 |a Huynh, Cong Phuoc.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447146537 
776 0 8 |i Printed edition:  |z 9781447158387 
776 0 8 |i Printed edition:  |z 9781447146513 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4471-4652-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)